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GENERAL OBJECTIVE

Being able to make sense of dynamical phenomena

This is relevant to many areas:

from understanding how a vehicle can withstand an underbody
blast

to understanding how a disease spreads depending on the
number of affected people and the policies put in place for
instance,

to understanding how efficient a combustion system is, what
performance different mixes of fuel yield

etc.

In other words: wouldn’t it be nice to be able to predict what could
happen?
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GENERAL PROBLEM TO BE ADDRESSED

Given a dynamical system, use it to make decisions.

What types of decisions?

Understanding how a dynamic phenomenon unfolds
under different input parameters: simulations → e.g.,
design decisions

What are the challenges? Why is it hard?

Size: even if the original problem is not always very large,
discretizing it potentially leads to large systems of equations
Complexity: such problems are likely nonlinear, possibly
non-smooth, and yet need to be solved
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MORE ON THESE CHALLENGES

Size: this can be addressed by Reduced-Order Modeling (ROM)
techniques

In this project, we looked at ROM using wavelets (3 conf. + 1
journal articles)

Complexity: such problems are likely nonlinear, possibly
non-smooth, and yet need to be solved

In this project, we looked at optimization algorithms:
regularization in particular (4 conf. + 2 journal articles)
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ADDITIONAL QUESTIONS / OBJECTIVES

Handling uncertainty in the dynamical systems we study /
observe

Fuel combustion: e.g., what decision can be made about
the best nozzle geometry if the fuel mix is not known with
certainty? Under fuel mix uncertainty, what design could
limit pollutant emissions during training but maximize
performance on the field?
Trajectories: e.g., of missiles. What if we could provide an
envelope of a missile’s trajectory under uncertainty of
outside conditions (e.g., weather)?
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ADDITIONAL QUESTIONS / OBJECTIVES

Predicting the future behavior of an unfolding event under
observation

We may not always have control of unfolding events.
But if we know the type of event we observe, we may be
able to deduce its parameters and other conditions so as to
predict its future behavior ahead of time.

Recomputing the behavior of an unfolding event after
unexpected changes

How to best inflect the unfolding of an event known to
lead to an undesired situation?
Can we recompute parameters to ensure or avoid a given
situation?

And all of these with guarantees.
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HOW WE MET THESE NEW OBJECTIVES

Handling uncertainty
Making predictions on unfolding events
Inflecting unfolding events
While guaranteeing results
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UNCERTAINTY

Our approach.

We modeled uncertainty using intervals → interval computations
We had to reconsider optimization algorithms to handle intervals →
algorithms based on numerical constraint solving techniques (see poster
session this afternoon)
We designed a new Finite Element Method technique using intervals
for nonlinear functions.

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:

Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → new I-POD technique

4 conference articles (2 with ARL collaborator), 1 journal article
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UNCERTAINTY: INTERVAL TECHNIQUES
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PREDICTIONS

Important note. Instead of solving: Fλ(x) = 0, we now solve:
FObs(λ, x \Obs) = 0, where our observations are uncertain.{

FObs(λ, x \Obs) = 0

∀xk ∈ Obs, xk = [Obsk, Obsk]

Our challenge.

Instead of solving the above problem in the original space, we solved it in
the reduced space where the observations do not correspond to a variable
of the reduced space.{

F(Φ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i ~xi

1 conference article, 1 submitted journal article
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PREDICTIONS: SOME RESULTS
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INFLECTING TRAJECTORIES

Our approach.

The problem is similar in essence to predictions.
Input parameters are to be recomputed
Observations are partially replaced: the starting point of the
computation is the point where a disruption might have occured (observed)
and we have an end point (or multiple constraints) which describes the
goal of the recomputation.

Challenge: ensuring that the computed parameters satisfy the stated
constraints / goals

1 conference article
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INFLECTING TRAJECTORIES: SOME RESULTS
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COLLABORATIONS

Some of this work stemmed from collaborations:

Uncertainty:
Craig Barker – ARL APG and his team, about the modeling of people in
vehicle of underbody blast simulations.→ integration of interval computations and the design of the I-POD
technique.

Luis Bravo – ARL APG, about the model-order reduction of a combustion
problem and uncertainty quantification related to fuel mix uncertainty.→ design of the interval FEM technique.

Predictions:
In the aim to design smart sensors, which predict rather than simply sense.→ problem modeling and preliminary results in making predictions.

Inflections:
From an APG Open House visit: how to recompute the load of a
helicopter after a hit, to ensure landing in a safe zone.→ preliminary algorithms to show feasibility of recomputations.
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COLLABORATIONS (CONT'D)

Rad Balu – ARL ALC (2016-2017): explored collaborations
about quantum computing; wrote a joint proposal.

Simon Su – ARL APG (2017): our point of contact for our
capstone project, a mobile app for handling dynamic systems
with uncertainty
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SOFTWARE TRANSFER

I-POD package transferred to Craig Barker’s team in 2015.

UQ App available for download.
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VISITS TO ARL

Open Campus: Horacio Florez, post-doc of our team, from
02/2015 to 12/2017, at ARL ALC, Adelphi.

Short visits: to ARL ALC and APG for open houses and other
presentations (e.g., poster presentation at June 2017 TAB
meeting).
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PUBLICATIONS AND PRESENTATIONS

2 edited books

5 journal articles

15 peer-reviewed conference articles

18 conference/workshop presentations

5 poster presentations

including: 1 journal article, 2 conference articles, and 1 poster in
collaboration with Luis Bravo.
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STUDENTS IMPACTED BY THIS PROJECT

2 post-doctoral researchers
4 students from my lab (even if not sponsored through this
project): 2 Ph.D., 2 UG
2016-2017: we identified 19 UTEP students to participate
in the AHPCRC Summer Institute: 12 selected
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NEXT STEPS

Model time uncertainty

Beyond uncertainty, handle erroneous or missing information
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THANK YOU FOR YOUR ATTENTION

Any Questions?

Below are illustrations of different areas of our work:
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