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Abstract—In Multi-Criteria Decision Making (MCDM), deci-
sions are based on several criteria that are usually conflicting and
non-homogenously satisfied. Non-additive (fuzzy) measures along
with the Choquet integral can model and aggregate the levels of
satisfaction of these criteria by considering their relationships.
However, in practice, it is difficult to identify such fuzzy measures.
An automated process is necessary and can be used when
sample data is available. Several optimization approaches have
been proposed to extract fuzzy measures from sample data; for
example, genetic algorithms, gradient descent algorithms, and the
Bees algorithm. In this article, instead of using the search space as
the primary focus of our research, we propose an algorithm that
speculates on the value of the objective function before actually
arriving to it. In addition, contrary to previous approaches to
extracting fuzzy measures, our algorithm guarantees the solution
to be global. Our experimental results show that our algorithm
improves the performance of previous approaches.

I. INTRODUCTION

Very often, decisions are based on several conflicting crite-
ria; e.g., which car to buy that is cheap and energy efficient.
This kind of complex decision process is called Multi-Criteria
Decision Making (MCDM).

In general, on a daily basis, when the decision is not
critical, in order to reach a decision, we mentally “average
/ sort” these criteria along with their satisfaction levels. In
computer science, averaging corresponds to aggregating values
of satisfaction with weights on each criterion, reflecting its
importance in the overall score (a.k.a. additive aggregation),
that is, calculating the overall score of an alternative with
the weighted sum of the criterion scores. In mathematical
terms, we can say that the weight assigned to different sets of
criteria in the weighted average approach forms an “additive
measure”. Additive aggregation, however, assumes that criteria
are independent, which is seldom the case [2].

Non-linear approaches also prove to lead to solutions that
are not completely relevant [9].

This should change if we consider possible dependence
between criteria. For example, if two criteria are strongly de-
pendent, it means that both criteria express, in effect, the same
attribute. As a result, when we consider the set consisting of
these two criteria, we should assign to this set the same weight
as to each of these criteria – and not double the weight as in the
weighted sum approach. In general, the weights associated to

different sets may not be the same as the sum of the weights
associated to individual criteria. In mathematics, such non-
additive functions assigning numbers to sets are known as
non-additive (fuzzy) measures. It is therefore reasonable to
describe the dependence between different criteria by using
an appropriate non-additive (fuzzy) measure.

For such measures, in general, m(A∪B) 6= m(A)+m(B),
where A and B are two disjoint sets of criteria. In particular, in
the cases we consider, the total weight m(X) = 1 associated
to the set X of all the criteria is, in general, smaller than
the sum of the weights m({1}) +m({2}) + . . . associated to
different criteria.

Now, we need to aggregate the scores xi corresponding
to different criteria by using an appropriate fuzzy measure.
We can no longer add these scores with the weights m({i})
corresponding to individual attributes, because the sum of
these weights is, in general, larger than 1, so we need to
decrease the weights assigned to different criteria.

One possible approach is to use the most optimistic com-
bination; we sort the values xi in increasing order: x1 ≤
x2 ≤ . . . ≤ xn, and then try to assign as much weight as
possible to larger (more optimistic) values xi. We start with
the largest value xn that we take with the full weight m({n}).
For the next best value xn−1, we select the largest weight for
which the group consisting of the two best criteria is assigned
its largest possible weight m({n − 1, n}). Since we already
know the weight m({n}) assigned to the n-th criterion, we
can thus find the weight assigned to the next best criterion
as the difference m({n− 1, n})−m({n}). Similarly, we find
the weight for the (n − 2)-nd criterion from the condition
that the three best criteria gets assigned the largest possible
weight m({n − 2, n − 1, n}); this means that we assign, to
this criterion, the weight equal to the difference m({n−2, n−
1, n}) −m({n − 1, n}). In general, to the i-th criterion, we
assign the weight m({i, i+1, . . . , n})−m({i, . . . , n}). With
these weights, we get the following weighted combination:

n∑
i=1

xi · (m({i, i+ 1, . . . , n})−m({i+ 1, . . . , n})).

This combination is known as the Choquet integral. Choquet
integrals with respect to fuzzy measures are actively used in



Multi-Criteria Decision Making [6].

However, to make this happen, fuzzy measures need to
be determined: they can either be identified by a decision
maker/expert or by an automated system that extracts them
from sample data. Since human expertise might not always
be available and getting accurate fuzzy values (even from an
expert) might be tedious [11], we focus here on extracting
fuzzy measures from sample data.

The sample data that we use is a set of overall preference
values (i.e., preferences that would otherwise be obtained after
combining criteria satisfaction levels and an appropriate fuzzy
measure through Choquet integral) associated with given in-
puts (i.e., items that we need to decide on, such as cars). Fuzzy
measure extraction seeks to determine the fuzzy measure that,
when combined in a Choquet integral, returns a value that best
models the expert’s decision, i.e., the corresponding sample
data value from expert. This problem is therefore tackled as an
optimization problem. Several optimization approaches have
been used to extract fuzzy measures from sample data, such
as gradient descent algorithms [4], genetic algorithms [3],
[17], [19], and the Bees algorithm [18]. More specifically,
fuzzy measure extraction constitutes a constrained optimiza-
tion problem since the optimal solution must also satisfy the
monotonicity constraints inherent to the fuzzy measure we aim
at determining.

All algorithms we mentioned earlier focus on search space
and use the random search to increase the possibility of
getting global results. Although some of these algorithms
perform global search over the search space, they cannot
guarantee to get the global result. In this article, instead of
focusing on search space, we propose a speculative algorithm
that makes optimistic assumptions about the optimum value
of the objective function before actually arriving to it. For
this minimization problem, we always bet that the optimum
value of the objective function lies in the lower part of the
function’s range and focus on this part of objective’s range.
The bottom line of this algorithm is that performance is not
compromised if our “guess” was not correct. Besides, we use
a complete interval solver to verify our speculations on the
value of the objective function which is key to guarantee
that the solutions we reach are global. Overall, our proposed
speculative algorithm not only improves the performance of
previous attempts but also guarantees the global result.

The article is organized as follows: Section II provides
background and recalls necessary definitions on MCDM, fuzzy
measures, fuzzy integrals, and fuzzy measure extractions.
Section III introduces the optimization problem corresponding
to Fuzzy Measure Extraction (FME) and recalls existing ap-
proaches to solving the specific problem of FME. We present
our approach in Section IV, describe our experimental strategy,
report, and analyze the results in Section V. Finally, we
draw conclusions and propose directions for future work in
Section VI.

II. BACKGROUND

A. Multicriteria Decision Making

Multicriteria decision making (MCDM) is the making of
decisions based on multiple criteria (or attributes). It is a 3-
tuple problem (X,A,�), where:

• X is the set of consequences;
• A = {1, · · · , n} is the (finite) set of n criteria (or

attributes); and
• � is a preference relation on the set of consequences.
The set of consequences X is a multidimensional space,

where X ⊆ X1 × · · · × Xn, and each Xi represents a set
of values of criterion i, where i ∈ A. For each i ∈ A, there
is a preference relation �i on each space Xi, such that for
xi, yi ∈ Xi, xi �i yi means that xi is preferred to yi. And
there is a global preference relation � on X .

Note: The reason why X can be a proper subset of X1 ×
· · · ×Xn is because all combinations of all criteria values do
not necessarily exist: each n-tuple of X1×· · ·×Xn represents
a possible instance / an alternative to pick from, all of which
are not necessarily possible. For instance, consider the case of
cars: one criterion being the price, another being the year of
make. It is unlikely that the lowest value of the price criterion
can match any high value of the year of make; i.e., there is
likely not a recent car that is very cheap.

For example, let us continue with the MCDM case
of buying a car. The decision is based on the buyer’s
preference on several criteria, such as, manufacturer,
model, power, cost, mileage per gallon. As a result:
A = {manufacturer, model, power, cost,

mileage per gallon}
Assume the buyer wants to choose one car from four
alternatives, then X={car1, car2, car3, car4}. For each
criterion i ∈ A, the buyer may order those four alternative
cars based on his/her preference, e.g., for criterion Ai, car1
� car3 � car4 � car2; for criterion Aj , car2 � car4 � car1
� car3. Now, the buyer has to combine his/her preference
with respect to all criteria for each alternative (each of the
four cars) to obtain a global preference ranking such that the
final order of the alternatives is in agreement with the buyer’s
partial preferences.

We assume that for each criterion i ∈ A, there exists a real
valued function ui : Xi → R such that for all xi, yi ∈ Xi:

xi �i yi ⇐⇒ ui(xi) ≥ ui(yi)

Function ui is called the i-th monodimensional utility func-
tion [10] and scales the values of all criteria onto a common
(real) scale. Then an aggregation operator that “combines”
the monodimensional utility functions needs to be used to
represent the global preference, i.e., a preference over the set
of consequences X: ∀x, y ∈ X , x � y or y � x.

The common aggregation operator being used is a weighted
sum; i.e.,

u(x) =

n∑
i=1

wiui(xi),



where wi is the weight of each criterion, representing the
importance of each criterion, and

∑n
i=1 wi = 1. The best

alternative is the one with the highest value of u. This approach
is simple and easy to use with low complexity. However,
using an additive aggregation operator assumes that all the
criteria are independent. In practice, it is only seldom the
case that criteria are indeed independent: often, decisions are
based on several conflicting criteria and using linear additive
aggregation will lead to possibly very counterintuitive deci-
sions. Non-linear approaches also prove to lead to solutions
that are not completely relevant. Therefore, using additive
approach is often not good: based on our previous work [9],
we choose to use non-additive approaches, i.e., fuzzy measures
and integrals [2].

B. Fuzzy measures and integrals

Fuzzy measures are non-additive measures. They can be
used to represent the degree of interaction of each subset of
criteria [3]. In what follows, we consider a finite set of criteria
A = {1, · · · , n}.

Definition Let A be a finite set and P(A) the power set of
A. A fuzzy measure (or a non-additive measure) defined on
A is a set function µ : P(A)→ [0, 1] satisfying the following
axioms:
(1) µ(∅) = 0
(2) µ(A) = 1
(3) if X , Y ⊆ A and X ⊆ Y , then µ(X) ≤ µ(Y )

Note: Fuzzy measures provide a weaker property, called
monotonicity, than normal probability measures. The fuzzy
measures are used to show the importance of each subset
and how each subset of criteria interacts with others. Fuzzy
measures are expensive to determine: for a set defined over
n criteria, 2n values of a fuzzy measure are needed because
there are 2n subsets of A. In reality, only 2n − 2 coefficients
are needed since the values for the empty set and the full set
are known (properties (1) and (2) from the above definition).

Two main integrals can be used to combine fuzzy measures.
Definition Let µ be a fuzzy measure on A. The Sugeno

integral of a function f : A→ R with respect to µ is defined
by:

(S)

∫
f ◦ µ =

n∨
i=1

(f(x(i)) ∧ µ(A(i)))

where ∨ is the supremum and ∧ is the infimum. ·(i) indicates
that the indices have been permuted so that 0 ≤ f(x(1)) ≤
· · · ≤ f(x(n)) ≤ 1, and A(i) = {x(i), . . . , x(n)}.

Definition Let µ be a fuzzy measure on A. The Choquet
integral of a function f : A→ R with respect to µ is defined
by:

(C)

∫
A

fdµ =

n∑
i=1

(f(σ(i))− f(σ(i− 1)))µ(A(i))

where σ is a permutation of the indices in order to have
f(σ(1)) ≤ · · · ≤ f(σ(n)), A(i) = {σ(i), . . . , σ(n)} and
f(σ(0)) = 0, by convention.

The Sugeno and Choquet integrals are structurally similar,
but essentially different in nature [5]: the Sugeno integral
is based on non-linear operators and the Choquet integral is
usually based on linear operators. The applications of Sugeno
and Choquet integrals are also very different [10]: the Choquet
integral is generally used in quantitative measurements, and
a MCDM problem usually uses a Choquet integral as a
representation function.

In this article, we focus on the Choquet integral.

C. Determining Fuzzy Measures

In MCDM, we would expect the decision maker to be more
than likely to give the values of the fuzzy measure, but in most
circumstances this is not the case. Attempts at making fuzzy
measure identification easier for the decision makers have been
made in [2], [14], [15].

• In [2], the authors attempt to make this task easier by
only requiring the decision maker to give an interval of
importance for each interaction.

• In [15], the author suggests a diamond pair-wise com-
parison, where the decision maker only must identify the
interaction of 2 criteria using a labeled diamond. From
there, the algorithm evaluates the values of the numeric
weights.

• In [14], the author discusses user specified weights mixed
with an interaction index denoted λ or ξ. This algorithm
is applied using an online aggregation application [13].

However, in most cases, the decision maker still does not
understand the interactions well enough to be able to give
a good value of each fuzzy measure. This is where expert
identification or fuzzy measure extraction comes into play.

In expert identification, an expert is used to giving all
values of the fuzzy measures. Expert identification in most
circumstances is unfeasible since in many cases, the decision
maker does not have constant access to an expert. In addition,
since there are 2n−2 values of a fuzzy measure for a problem
with n criteria expert identification, it would be too time
consuming anyway to be practical [4].

As a result, instead of using an expert to provide us with the
values of the fuzzy measure, we choose to extract the fuzzy
measure.

III. FUZZY MEASURE EXTRACTION (FME) AND
OPTIMIZATION

A. Relation Between our Problem and Optimization

For lack of an expert to provide all values of the fuzzy
measure, we need seed data to give us an idea of the pref-
erences / expert’s opinions: we use sample data. We extract
fuzzy measures starting from such seed data. Our objective is
to determine a fuzzy measure that returns the closest values
to the expert’s coalition values: the values that constitute our
seed data.

Let us take a look at the following situation: Our MCDM
problem involves n criteria, and we have m sample data. It
means that we have access to the following: m decision values
ỹj , j ∈ {1, · · · ,m}, corresponding to m alternative items



Xj . It means that if we knew the corresponding exact fuzzy
measure µ, let us denote it by µ̃, we would be able to compute
ỹj as (C)

∫
A
fdµ̃ =

∑n
i=1(f(σ(i)) − f(σ(i − 1)))µ̃(A(i)),

where f is a utility function defined on X .
Now, with our sample data, we only have access to the

preference values of a subset of X . In order to have access
to preference values of other alternatives in X , we need to
determine µ, which is, all 2n−2 values of the fuzzy measure.
We are going to determine all values of µ such that the
corresponding computed Choquet integral ideally equals the
preference values of the sample data. In practice however, for
lack of equaling the sample decision data, we aim at getting as
close to them as possible. As a result, we aim at minimizing
the following sum (and getting the “error” e as close to 0 as
possible) [7]:

e =

m∑
j=0

(
ỹj −

n∑
i=1

(f(σ(i))− f(σ(i− 1)))µ(A(i))

)2

(1)

When e = 0, the identified fuzzy measure µ is the exact
solution of the problem: this is the ideal case. In most cases,
we put up with reaching “only” an approximate optimal
solution, that is, with e 6= 0 but close to 0. The reason for
such a weaker outcome is that the sample data might not be
fully consistent with one fuzzy measure, i.e., human decisions
are not always consistent.

As a result, extracting a fuzzy measure is cast down to
solving an optimization problem. This optimization problem
is actually a constrained optimization problem since the val-
ues of µ (that the minimization process seeks) must satisfy
monotonicity properties that characterize a fuzzy measure (as
seen in Section II).

B. FME as a Constrained Optimization Problem

In constrained optimization, in addition to an objective
function to minimize (or maximize), constraints need to be
satisfied. In other words, a solution to such a problem is
an element of the search space, among those that satisfy all
constraints, that minimizes the objective function.

In the case of fuzzy measure extraction, fuzzy measures
must be monotonic (1) and values must be between 0 and 1
(2). (1) defines the constraints of the FME problem; (2) defines
the search space. For a problem with n criteria, the number
of monotonicity constraints is

∑n−2
k=1

(
n
k

)
∗ (n− 2). The fuzzy

measure extraction problem is an optimization problem subject
to constraints (monotonicity), which minimizes the objective
function:

min e =

m∑
j=0

(
ỹj −

n∑
i=1

(f(σ(i))− f(σ(i− 1)))µ(A(i))

)2

,

where µ is the fuzzy measure to be determined and subject to
constraints such as

• 0 ≤ µ(i) ≤ 1,∀(i) ∈ P(A)
• µ(i) ≤ µ(j), if (i), (j) ⊆ A and (i) ⊆ (j)

where A is a set of criteria, and P(A) is the power set of A.
Since fuzzy measure extraction is a constrained optimization

problem, the candidate solutions must be evaluated to make
sure they fit the constraints.

C. Optimization Techniques used for FME

As pointed out just before, the problem we address can be
modeled and solved as a constrained optimization problem.
Several optimization approaches have been proposed to extract
fuzzy measures, including gradient descent algorithms, genetic
algorithms, neural networks, and Bees algorithm. We briefly
go over them in what follows

Genetic algorithms have been successfully used to solve a
number of optimization problems, including fuzzy measure
extraction in [3], [17], and [19]. They show promise for
extracting fuzzy measures. However, they suffer from the
risk to fall into a local optimum. While mutations are part
of genetic algorithms to try to avoid falling in local minima,
they do not totally prevent it (especially if there are local
optima that are in distant locations but have values close to
the global optimum).

The gradient descent algorithm was also proposed for
FME, see [4], taking advantage of the lattice structure of the
coefficients of the fuzzy measure. This algorithm can reach
a local optimum quickly and accurately if the initial values
are properly selected. However, the monotonicity constraints
need to be checked at every iteration. This algorithm was
improved on in [1]. According to the experiments reported
in [1], the modified gradient-descent algorithm proved to be
385 times faster than the corresponding Genetic Algorithm
approach with similar or better accuracy, on the reported set
of test cases.

A neural network approach for FME was proposed in [16]:
the calculation of the Choquet integral was described by a
neural network and the goal of this algorithm was to find a
global optimum on the search space. However, the search
easily falls in a local minimum.

The Bees algorithm, proposed in [12], was also used for
FME in [18]. It uses bees’ natural food foraging habits as
a model for the exploration of the search space. The Bees
algorithm combines a local and “global” search that are
both based on bees natural foraging habits. Although this
algorithm provided good results for FME, there was still not
enough evidence to prove that the algorithm does not fall into
a local optimum.

IV. IDENTIFYING FUZZY MEASURES USING A
SPECULATIVE ALGORITHM

Although previous attempts using optimization algorithms
have been shown to extract fuzzy measures successfully from
sample data, they all have limitations. In particular, the re-
turned solution (found minimum of the objective function)
might just be a local minimum, or even worse, a good value.



There is no guarantee that it would be the global minimum at
all. Moreover, uncertainty might be part of the model to solve.
It is reasonable for experts to provide data in ranges instead
of precise values. Using intervals allows to take this kind
of uncertainty into account. Furthermore, when dealing with
problems defined on real numbers, the actual computations
will round each real number to the most “relevant” floating-
point number. Rounding errors can lead the returned result to
be dramatically different from the original expected solution.

The work presented in this article addresses the above-
mentioned issues: it guarantees results to be global, it can
factor in interval data, and will not be prone to rounding
errors. Our proposed approach is an interval-based technique
that we called a speculative algorithm. Instead of using the
search space as the primary focus of our search, the proposed
algorithm speculates on the value of the objective function
before actually arriving to it. The aim of this algorithm is
to speed up the search process by primarily focusing on
the objective function’s range and always betting that the
minimum value of the objective function lies in the lower
part of the function’s range. If our speculation is correct,
then we can restrict the search space to the area that allows
the objective function to take on the speculated value, and
keep going to the next lower half of the range. In addition,
the performance of our algorithm is not compromised: if we
speculate wrong, then we do not lose more time than we would
have if we had not speculated at all.

In order to verify our speculations on the range of the
objective function and guarantee the global results, we use
an interval solver - RealPaver. RealPaver [8] is a complete,
interval-based, continuous constraint solver able to solve non-
linear systems through interval computations. For the purpose
of our speculative algorithm, we primarily use the narrowing
function of RealPaver, which discard areas of the search space
that are clearly not solution and returns a shrunk search space
that contains all solutions.

Eventually, let us call e∗ the optimum value of the objective
function that is found by our algorithm. e∗ is guaranteed to
be the global minimum due to the following: our optimistic
approach always bets on the lowest values and only “jump”
up to larger values if RealPaver has found no feasible element
in the search space matching the unrealistically speculated
lower value of the objective function.

Let us now take a look at the algorithm in more details. In
the case of fuzzy measure extraction, the problem is defined
as follows:

• the variables are the coefficients of the fuzzy measure:
for n criteria, there are 2n − 2 variables, and the initial
domain of each variable is [0, 1], which defines the initial
search space as D0 = [0, 1]2

n−2;
• the set of constraints is a set of inequality following the

monotonicity of fuzzy measure: there are
∑n−2

k=1

(
n
k

)
∗(n−

2) constraints;

• the objective function e is:

e =

m∑
j=0

(
ỹj −

n∑
i=1

(f(σ(i))− f(σ(i− 1)))µ(A(i))

)2

(2)
The way we deal with e as a constraint sent to RealPaver
is by forcing the values of e to be in a specified range
R: e ∈ R.

A problem file sent to RealPaver typically consists of the above
variables and constraints, in which the initial search space is
updated to the current search space and the range of e is the
currently speculated one. In the pseudocode that follows, we
denote such a problem P by P = D + R where D is the
current search space and R is the current speculated range
of the objective function. Our algorithm roughly unwinds as
follows:

Algorithm 1 Our speculative algorithm
1: // Initial problem P0 = D0 +R0

2: D1 = SendToRealPaver(P0) // reduced search space
3: [a1, b1] = e(D1) //new range of the objective function e
4: Bisect([a1, b1],R1 = [a1,

(a1+b1)
2 ],R2 = [ (a1+b1)

2 , b1])
5: Create 2 new sub problems: P1 = D1 + R1 and P2 =
D1 +R1

6: Push P1 and P2 into Stack S, with lower-valued P1 at the
top

7: while S is not empty and no solution is found do
8: P = D +R problem at the top of S
9: D1 = SendToRealPaver(P ) // reduced search space

10: if D1 is not empty then
11: [a1, b1] = e(D1) //new range of the objective func-

tion e
12: if D1 is small enough or [a1, b1] is small enough

then
13: [a1, b1] is our optimum value
14: else
15: Bisect([a1, b1],R1,R2)
16: Create 2 new sub problems: P1 = D1 + R1 and

P2 = D1 +R1

17: Push P1 and P2 into S
18: end if
19: end if
20: end while

V. EXPERIMENTS AND RESULTS

A. Testing Methodology

The goal of our experiments is to show that our speculative
approach allows to improve the quality of the extracted fuzzy
measure. In order to show this, we designed a fuzzy measure µ
for 4 criteria, presented in Table I, and ran our algorithm to see
how well it was able to reconstruct it. Besides, in order to be
able to compare the performance of the speculative algorithm
against existing approaches, we followed the same procedure
as in [4] and [3], as described hereafter.



The input-output system contains m sample data with Y =
fc(X) + g, where Y is the vector of the system outputs, X
is a n-tuple input (x1, · · · , xi, · · · , xn) with xi ∈ {0, 1} for n
criteria, fc(X) is the calculated Choquet integral, and g is a
centered gaussian noise. In the same manner as [4] and [3]
did, we also checked 5 different variances, σ2 = 0.0, 0.00096,
0.00125, 0.00625, and 0.0125 respectively. Our algorithm was
executed on an Intel Xeon e5540 @2.53GHz machine. In order
to find the optimal solution (most fitting fuzzy measure), we
were interested in finding the minimum of the least square
error E, where E = e

m = 1
m

∑m
i=1(yi − ŷi)2. For 4 criteria,

we tested with 3 different sample sizes (m = 80, 120, 180),
and calculated the average as the final result.

TABLE I
FUZZY MEASURE TO BE IDENTIFIED FOR EXAMPLE I

A µ(A) A µ(A) A µ(A)

{1} 0.1 {1, 2} 0.3 {1, 2, 3} 0.5
{2} 0.2105 {1, 3} 0.3235 {1, 2, 4} 0.8667
{3} 0.2353 {1, 4} 0.7333 {1, 3, 4} 0.8824
{4} 0.6667 {2, 3} 0.4211 {2, 3, 4} 0.9474

{2, 4} 0.8070
{3, 4} 0.8235

B. Quality of Solutions

Table II shows our experimental results for 4 criteria. We
compare them with the results of the Bees algorithm, genetic
algorithm, and gradient descent algorithm in the same table.
Results of the Bees algorithm, genetic algorithm, and gradient
descent algorithm are from [18]. The final obtained fuzzy
measures are in table III.

We observe that when the variance of the gaussian noise
is increased, the mean square error is increased accordingly.
However, the mean square error E is always less than the
variance, which means our algorithm does not generate nega-
tive influence to the data. Furthermore, for all variances, our
results are not only much better (closer to 0) than all of the
other algorithms but also very close to the optimal results (see
table I).

TABLE II
COMPARISON WITH THE OTHER ALGORITHMS

σ2 Gradient Genetic Bees Speculative
Descent Algorithm Algorithm Algorithm

0.0 1.4E-7 0.00141472 1.47E-6 3.73E-9
0.00096 0.00083 0.0014723 0.000509 1.55E-5
0.00125 0.0108 0.00141241 0.001106 2.65E-5
0.00625 0.0530 0.00183267 0.004566 0.000705
0.01250 0.1054 0.00241865 0.009878 0.002898

C. Other test examples

We also tested for the problems with 5 criteria and 6 criteria.
Table IV and table V show the fuzzy measure values to be
identified for 5 criteria and 6 criteria, respectively. These

TABLE III
FINAL OBTAINED FUZZY MEASURE (n = 4)

µ
σ2

0.0 0.00096 0.00125 0.00625 0.01250

{1} 0.1 0.10023 0.10071 0.10001 0.10461
{2} 0.2105 0.21011 0.20995 0.21253 0.20352
{3} 0.2353 0.2363 0.23548 0.23436 0.24098
{4} 0.6667 0.6667 0.66810 0.66488 0.66071
{1, 2} 0.3 0.30006 0.29991 0.30440 0.29790
{1, 3} 0.3235 0.32284 0.32389 0.32506 0.31564
{1, 4} 0.7333 0.73356 0.73178 0.72729 0.74509
{2, 3} 0.4211 0.42075 0.42203 0.42134 0.41666
{2, 4} 0.807 0.80784 0.80511 0.80926 0.80865
{3, 4} 0.8235 0.82299 0.82261 0.81920 0.82530
{1, 2, 3} 0.5 0.49991 0.50054 0.49681 0.50624
{1, 2, 4} 0.8667 0.86690 0.86715 0.86847 0.86636
{1, 3, 4} 0.8824 0.88203 0.88239 0.88885 0.87406
{2, 3, 4} 0.9474 0.94774 0.94790 0.94655 0.94404

values are generated randomly and follow the constraints we
mentioned in Section III-B.

For each problem, we added 5 different Gaussian noises
(σ2 = 0.0, 0.00096, 0.00125, 0.00625, and0.0125), and for
each noise, we generated 3 different size of samples (m =
120, 180, 240) and calculated the average as the final result.

Table VI shows the mean square error (E) for problems
with 4, 5, and 6 criteria. Although the number of variables
increases exponentially with the number of criteria (from 14
for n = 4 to 62 for n = 6), the mean square error E does not
become worse, even better in some cases.

The fuzzy measures for σ2 = 0.0 for n = 5 and n =
6 obtained by using our speculative algorithm are shown in
Table VII and Table VIII, respectively. The obtained fuzzy
measure exactly matches the value of actual measures.

Table IX shows the execution time for n = 4, 5, 6, and for
different number of variables (from 14 to 62), when variance
is small, the execution time for n = 4 is 10 times faster than
the other 2 cases. However, with the increasing of the variance,
the execution times for different number of variables are very
close.

TABLE IV
FUZZY MEASURE TO BE IDENTIFIED FOR n = 5

µ1 = 0.1 µ12 = 0.3 µ123 = 0.5 µ1234 = 0.8

µ2 = 0.2105 µ13 = 0.3235 µ124 = 0.622 µ1235 = 0.9206

µ3 = 0.2353 µ14 = 0.4562 µ125 = 0.8667 µ1245 = 0.9542

µ4 = 0.4276 µ15 = 0.733 µ134 = 0.725 µ1345 = 0.9614

µ5 = 0.6667 µ23 = 0.4211 µ135 = 0.8824 µ2345 = 0.9822

µ24 = 0.48 µ145 = 0.8546

µ25 = 0.8070 µ234 = 0.78

µ34 = 0.5605 µ235 = 0.9474

µ35 = 0.8235 µ245 = 0.825

µ45 = 0.753 µ345 = 0.8913



TABLE V
FUZZY MEASURE TO BE IDENTIFIED FOR n = 6

µ1 = 0.06 µ12 = 0.08 µ123 = 0.3 µ1234 = 0.73 µ12345 = 0.99

µ2 = 0.04 µ13 = 0.14 µ124 = 0.32 µ1235 = 0.5 µ12346 = 0.89

µ3 = 0.08 µ14 = 0.15 µ125 = 0.34 µ1236 = 0.69 µ12356 = 0.85

µ4 = 0.03 µ15 = 0.14 µ126 = 0.46 µ1245 = 0.57 µ12456 = 0.97

µ5 = 0.12 µ16 = 0.44 µ134 = 0.32 µ1246 = 0.88 µ13456 = 0.84

µ6 = 0.03 µ23 = 0.22 µ135 = 0.26 µ1256 = 0.8 µ23456 = 0.91

µ24 = 0.26 µ136 = 0.49 µ1345 = 0.51

µ25 = 0.14 µ145 = 0.34 µ1346 = 0.75

µ26 = 0.33 µ146 = 0.67 µ1356 = 0.56

µ34 = 0.14 µ156 = 0.5 µ1456 = 0.83

µ35 = 0.19 µ234 = 0.72 µ2345 = 0.9

µ36 = 0.22 µ235 = 0.41 µ2346 = 0.81

µ45 = 0.26 µ236 = 0.58 µ2356 = 0.71

µ46 = 0.17 µ245 = 0.41 µ2456 = 0.76

µ56 = 0.41 µ246 = 0.37 µ3456 = 0.73

µ256 = 0.48

µ345 = 0.28

µ346 = 0.67

µ356 = 0.43

µ456 = 0.61

TABLE VI
MEAN SQUARE ERROR FOR n = 4, n = 5 AND n = 6

σ2 n = 4 n = 5 n = 6

0.0 3.73E-9 2.47E-5 3.47E-9
0.00096 1.55E-5 3.30E-5 6.44E-7
0.00125 2.65E-5 3.43E-5 1.13E-6
0.00625 0.0007 0.0004 5.4E-5
0.01250 0.0029 0.00143 0.0026

TABLE VII
FINAL OBTAINED FUZZY MEASURE (n = 5)

µ1 = 0.0992 µ12 = 0.2986 µ123 = 0.4985 µ1234 = 0.8001

µ2 = 0.2109 µ13 = 0.3176 µ124 = 0.6219 µ1235 = 0.9359

µ3 = 0.2363 µ14 = 0.4562 µ125 = 0.8627 µ1245 = 0.9558

µ4 = 0.4272 µ15 = 0.7322 µ134 = 0.7249 µ1345 = 0.9621

µ5 = 0.6675 µ23 = 0.4203 µ135 = 0.8790 µ2345 = 0.9835

µ24 = 0.4802 µ145 = 0.8545

µ25 = 0.8049 µ234 = 0.78

µ34 = 0.5604 µ235 = 0.9359

µ35 = 0.8235 µ245 = 0.825

µ45 = 0.7528 µ345 = 0.8911

TABLE IX
AVERAGE EXECUTION TIME (S)

σ2 n = 4 n = 5 n = 6

0.0 14.6 138.7 114.7
0.00096 27.4 137.0 140.3
0.00125 32.2 166.1 281.5
0.00625 240.0 383.1 473.3
0.01250 606.9 962.7 334.1

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed an interval-based algorithm that
speculates the value of the objective function and always bets
that the optimum value of the objective function lies in the
bottom part of the function’s range. We then used RealPaver, a
complete interval solver, to verify our speculations on the value
of the objective function. By using RealPaver, the search space
is narrowed down and the global results can be guaranted,
as RealPaver always return a search space that contains all
solutions that satisfy the constraints if there is solutions to the
problem. By speculating on the range of the objective function,
the search performance can be sped up, as those speculations
whose solutions are not found by RealPaver are discarded,
focusing on the speculated ranges for the objective function.
In comparison with other algorithms that have been used
for fuzzy measure extraction, the results of our speculative
algorithm are closer to 0, showing the better quality of the
results.

We know that the bottleneck of using a fuzzy measure
is its exponential cost (in our case, a number of values to
identify that is exponentially proportional to the number of
criteria). In practice, it is reasonable to consider the relation-
ship of any two criteria and ignore the interaction among
3 or more criteria: this constitutes a reasonable compromise
between assuming independence of the criteria and handling
all possible dependencies. The corresponding fuzzy measure
is called a 2-additive fuzzy measure. In the future, we will
apply our speculative algorithm to 2-additive fuzzy measures
and apply it to real-world situations, such as software quality
assessment, as we did with the Bees algorithm in the past.
Furthermore, we plan to use our FME approach to help
model non-expert decision-making process as well, helping



TABLE VIII
FINAL OBTAINED FUZZY MEASURE (n = 6)

µ1 = 0.0595 µ12 = 0.0805 µ123 = 0.2998 µ1234 = 0.73 µ12345 = 0.99

µ2 = 0.04 µ13 = 0.1401 µ124 = 0.32 µ1235 = 0.5 µ12346 = 0.89

µ3 = 0.08 µ14 = 0.15 µ125 = 0.3399 µ1236 = 0.69 µ12356 = 0.8498

µ4 = 0.03 µ15 = 0.1456 µ126 = 0.4602 µ1245 = 0.57 µ12456 = 0.97

µ5 = 0.1195 µ16 = 0.44 µ134 = 0.3201 µ1246 = 0.88 µ13456 = 0.84

µ6 = 0.0299 µ23 = 0.2201 µ135 = 0.2597 µ1256 = 0.7948 µ23456 = 0.9102

µ24 = 0.26 µ136 = 0.4902 µ1345 = 0.51

µ25 = 0.14 µ145 = 0.3402 µ1346 = 0.75

µ26 = 0.33 µ146 = 0.6703 µ1356 = 0.5594

µ34 = 0.1399 µ156 = 0.5012 µ1456 = 0.8271

µ35 = 0.19 µ234 = 0.72 µ2345 = 0.8995

µ36 = 0.22 µ235 = 0.4098 µ2346 = 0.81

µ45 = 0.2585 µ236 = 0.5801 µ2356 = 0.71

µ46 = 0.17 µ245 = 0.4107 µ2456 = 0.7602

µ56 = 0.4104 µ246 = 0.37 µ3456 = 0.7304

µ256 = 0.4813

µ345 = 0.2798

µ346 = 0.67

µ356 = 0.43

µ456 = 0.6096

understand which information factors contribute to changing
decisions’ outcomes.
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