
Using Interval Constraint Solving Techniques to
Better Understand and Predict Future Behaviors of

Dynamic Problems
Leobardo Valera, Martine Ceberio

Computational Science Program
Computer Science Department

The University of Texas at El Paso
El Paso, TX 79968, USA

{lvalera, mceberio}@utep.edu

Abstract—The ability to make observations of natural phe-
nomena has played a fundamental role in our world. From what
we observe, models are derived and we can get an understanding
about how things work by simulating our models. This has
been particularly important in areas such as medicine, physics,
chemistry. However, when we do not initiate simulations but
that we are simply observing a phenomenon, it is valuable to
be able to understand it “on the fly” and be able to predict
its future behavior. Added challenges come from the fact that
observations are never 100% accurate and therefore we must deal
with uncertainty. In this work, we use Interval Constraint Solving
Techniques (ICST) to handle uncertainty in the observations of
a given phenomenon, and to be able to determine its initial
conditions and unfold the dynamic behavior further in time.

I. INTRODUCTION

The understanding of dynamic systems has been and re-
mains crucial to our perspective and the betterment of the
world: this is the case in medicine, physics, chemistry, etc. For
example, drug resistance in cancer, anti-coagulation therapy
[1], or chemical reactions [2].

The scientific approach is based on observations to build
models, and then models are tested, simulated under given
initial conditions, boundary conditions depending on the phe-
nomena being tested.

Now sometimes, we do not have control of such conditions
and we can only observe the unwinding of a phenomenon at
a given time (or at given few times). The question is: what
can we learn from such observations that can inform us about
the type of phenomenon taking place? and what can we learn
from the way the phenomenon at hand will keep unwinding
in the future?

These questions are at the heart of the work presented in
this article.

Existing approaches can be used to address part of this
problem, mainly the forward propagation of the information
gained by observation to infer behavior in the future of the
phenomenon at hand. Such is the case of Growth Approaches,
which consists on to study the separation of initially very close
dynamical trajectories and is concerned with exponential rate

of growth of such errors [3], [4], [5], [6]. Another approach
highly used is the Statistical Prediction, which is implemented
by sampling an initial condition distribution and later using the
Monte Carlo methodology [3].

However, added challenges to addressing these questions
lie in the fact that observations are never 100% accurate,
and handling uncertainty needs to be part of the solution we
propose.

In this article, we recall existing techniques to handle
dynamic systems with and without uncertainty II. We then
proceed to specifically pointing out the challenges that need
to be addressed and we provide examples of such situations III.
We describe techniques we use to address these problems
and how we model these problems to efficiently solve them.
Finally, we present and analyze experimental results Table IV,
before to conclude and draw directions for future work.

II. BACKGROUND

Let us start by recalling the type of problems that we are
attempting to solve. Many real-life phenomena are modeled
and result in very large (most likely) nonlinear systems of
equations that need to be solved. Solving these problems boils
down to finding the zeroes of large-dimensional functions.
Traditionally, finding zeroes of functions is achieved via the
use of Newton methods.

A. The Newton Method

The Newton method is an iterative procedure that finds the
zeroes of continuously differentiable functions F : Rn → Rn.
The formulation of the method is given by:

JF (xn)(xn+1 − xn) = −F (xn) (1)

where JF (xn) is the n× n Jacobian matrix of F .
If F is twice differentiable and the Hessian ∇2F (x) is

Lipschitz continuous in a neighborhood of a solution x∗ then:
1) if the initial point x0 is sufficiently close to x∗, the

sequence of iterations converges to x∗; and
2) the rate of convergence of {xk} is quadratic.

Given an initial point x0

for i=1 until convergence
Compute F = F (x0) and J = JF (x0)
Solve the linear system of equations: J∆x = −F ,
Compute: xi+1 = xi +∆x

end for

TABLE I
NEWTON METHOD OUTLINE

The Newton method is outlined in Table I: The Newton
method converges if certain conditions are satisfied; for ex-
ample, if a stationary initial point is chosen or if the approach
oulined above enters in a cycle, the Newton method will not
converge. Also, if the Jacobian matrix is singular or if any of
its entries is discontinuous at the root, the convergence may
fail. If the Jacobian is singular at the root of the function or
the Hessian is not defined at it, the process may converge but
not in q-quadratic order.

In this subsection, we give a brief overview of interval
computations and how to solve systems of equations that
involve intervals; for more details about the field, please
see [9].

B. Computations with Intervals

Let us start by pointing that in what follows, when
mentioning intervals, we actually mean closed intervals.
In addition, for simplicity, when we talk about intervals,
we will talk about real-value-bounded intervals (not just
floating-point-bounded intervals as is commonly the case
when implemented on a computer).

So in this work, an interval X is defined as follows:

X = [X, X] = {x ∈ R : X ≤ x ≤ X}. (2)

Operations on intervals are simply defined as follows: Since
x ∈ X means that X ≤ x ≤ X, and y ∈ Y means that
Y ≤ y ≤ Y the followings operations are defined based on
its infimum and supremum:
Addition:

X + Y = [X + Y ,X + Y] (3)

Substraction:

X − Y = [X − Y ,X − Y] (4)

Multiplication:

X · Y = [minS,maxS], where
S = {XY ,XY ,XY ,XY } (5)

As we observe above, combining intervals with addition,
subtraction, and multiplication, always results in one interval.
However, it is not always the case without extra care. For
instance, the division of an interval by another one that
contains 0 should result in two disjunct intervals. To avoid
such cases with compromise the nature of traditional interval
computations (according to which combining intervals should

result in an interval), we generalize the combination of two
intervals as follows: ∀X,Y intervals,

X ⋄ Y = □{x ⋄ y, where x ∈ X and y ∈ Y } (6)

where ⋄ stands for any arithmetic operator, including division,
and □ represents the hull operator.

More generally, when carrying out more general computa-
tions involving intervals, e.g., computing the interval value of
a given function f : Rn → R on interval parameters (or a mix
of interval and real-valued parameters), we have the following
property:

f(X1, . . . , Xn) ⊆ □{f(x1, . . . , xn),where
x1 ∈ X1, . . . , xn ∈ Xn}

(7)

where f(X1, . . . , Xn) represents the range of function f over
the domain X1×· · ·×Xn and □{f(x1, . . . , xn), where x1 ∈
X1, . . . , xn ∈ Xn} represents the smallest closed interval
enclosing this range. Computing the exact range of f over
intervals is therefore a very hard problem and instead, we
approximate the range of f over domains using what we call
an interval extension of f , which is in fact a surrogate interval
function F .

Interval extensions of a given function f have to satisfy the
following (very lose) property:

f(X1, . . . , Xn) ⊆ F (X1, . . . , Xn) (8)

which to some extent would allow F to be the function that
maps any input to the interval [−∞,+∞]. More pragmatically,
the aim is to identify a function F that does not dramatically
overestimate the range of our original function f (the closer
to the range the better of course, but cost of achieving better
range is also an issue).

There are many interval extensions. The most common is
the so-called natural extension, which is a simple interval
extension of the syntactical expression of f : arithmetic oper-
ations are evaluated using interval rules as shown above, and
any other single operator – e.g., power – has its own interval
extension; see [9] for more details. Other extensions include
Trombettoni et Al.’s occurrence grouping approach [12].

In general, two different interval extensions of the same real
function f are different Fig. 1. illustrates this case.

In this work, we use interval computations provided in Re-
alPaver [7] and the natural extensions this software provides.

C. How to Solve Nonlinear Equations with Intervals?

The premise of our approach is that we will replace
several real-valued computational processes by one interval-
based computational process by abstracting one real-valued
parameter into an interval parameter. Each process (real-valued
or interval) consists in solving a (most likely) nonlinear system
of equations. In this subsection, we give the reader an overview
of the way we proceed to solve a nonlinear system of equations
that involves intervals.

We choose to solve nonlinear equations using interval
constraint solving techniques. Constraint solving techniques

f, g
0 1

f : x 7→ x3 − x4

g : x 7→ −x2((x − 0.5)2 − 0.25)
Evaluation of f
Evaluation of g

Fig. 1. Evaluation of the natural extensions of two expressions of the same
real function f .

allow to solve systems of constraints. Generally speaking, a
constraint describes a relationship that its variables need to
satisfy. A solution of a constraint is an assignment of values to
the variables of the given constraint such that the relationship
is satisfied.

In our case, each of our nonlinear equations
fi(x1, . . . , xn) = 0 is a constraint: it establishes a relationship
that the values of the variables should satisfy, in this case so
that fi(x1, . . . , xn) be equal to 0. Our system of nonlinear
equations is therefore a system of constraints and our goal
is to find values of the variables of this system that are such
that:

∀i, fi(x1, . . . , xn) = 0.

Constraint solving techniques allow us to identify such
values of the parameters that satisfy the constraints. Interval
constraint solving techniques [14], [13] produce a solution
set (set of the solutions of the constraint system) that is
interval in nature: it is a set of multi-dimensional intervals
(or boxes whose dimension is n, the number of variables)
that is guaranteed to contain all the solutions of the constraint
problem (in our case, of the nonlinear system of equations).

The guarantee of completeness provided by interval con-
straint solving techniques comes from the underlying solv-
ing mode: a branch-and-bound [15] (or branch-and-prune
for faster convergence [16]) approach that uses the whole
search space as a starting point and successively assess the
likeliness of finding solutions in the given domain (via interval
computations) and possibly (if Branch and Prune) reduce it,
and discard domains that are guaranteed not to contain any
solution, see Fig. 2. Note: while Branch-and-Bound algorithms
only assess domains for likeliness of containing a solution (it
is a keep or discard approach), Branch-and-Prune algorithms
first use the constraints to reduce the domains to consistent
domains (using appropriate consistency techniques based on
interval computations) and the outcome (empty domain or not,

x 7→ cos(x)

c : cos(x) ≥ 0
−1

1

−π
2

0 π
2 π 3π

2
5π
2

−1

1

−π
2

0 π
2

π 3π
2

5π
2

A1
A′

1

A2
A′

2Fig. 2. Branch and Prune

small enough or not to be called a solution) decides whether
to continue exploring the domain or not.

For instance, if on a given domain D ⊂ R, any of the fi
is such that 0 ̸∈ Fi(D), where Fi is an interval extension of
fi, then we can conclude that there is no zero of our system
of equations in D and discard it altogether. In Table II-C,
we outline the generic Branch-and-Bound approach, which
is the underlying principle of search in interval constraint
solving techniques, and allows to guarantee completeness of
the search.

Input: System of constraints C = {c1, . . . , ck}, a search space D0.
Output: A set Sol of interval solutions
Set Sol to empty
If ∀i, 0 ∈ Fi(D0) then:

Store D0 in some storage S1

While (S is not empty) do:
Take D out of S
If (∀i, 0 ∈ Fi(D)) then:

If (D is still too large2) then:
Split3 D in D1 and D2

Store D1 and D2 in S
Else:

Store D in Sol
Return Sol

TABLE II
GENERIC BRANCH-AND-BOUND ALGORITHM.

Using interval computations carries a lot of advantages,
one of which being that the search can be guaranteed to
be complete and that since intervals are used (interval com-
putations to assess whether a domain is a viable option of

not), uncertainty can easily be added and seamlessly handled.
This however comes at a cost: interval solving processes
are usually more computationally taxing that regular real-
valued ones. Nevertheless, in what follows we will show that,
when comparing our interval-based approach to real-valued
processes that have to be repeated countless times, then the
extra cost of interval computations is counterbalanced and our
approach more computationally effective.

Let us consider the following:
Example 1 (Yamamura Problem): Let F : Rn → Rn be

defined as follows:

2.5x3
i −10.5x2

i +11.8xi− i+
n∑

j=1

xj = 0 i = 1, 2, . . . , n (9)

the variables xi ∈ [−108 , 108]. For n = 4, we can obtain
three (3) solutions using ICST and only one (1) solution using
Newton’s method, see Fig. 3.

Fig. 3. Graphical representation of Yamamura’s solution for n = 4

The following show an example where ten (10) solutions
are obtained using ICST and the Newton’s method does not
converge due to the singularity of the Jacobian of F .

In Table III is presented a comparison between Newton’s
method and ICST method to solve different nonlinear sys-
tem of equations. The description of the studied problems
can be found in: http://www-sop.inria.fr/coprin
/logiciels/ALIAS/Benches/node1.html

Newton’s method ICST method
Problem n # Sol. ||F (x)|| # Sol. ||F (x)||
Brown 5 NC 7.55e+30 3 9.34e-09
Broyden Banded 10 1 2.38e-13 1 3.44e-09
Broyden Tridiagonal 10 NC 1.0238 2 3.11e-09
Discrete Boundary 20 1 4.84e-15 1 3.87e-10
Eiger-Sikorski-Stenger 20 1 1.25e-15 2 5.56e-16
Extended Freudenstein 20 1 1.65e-13 1 3.11e-14
More Cosnard 5 1 4.80e-17 1 3.28e-15
Yamamura 4 1 4.44e-16 3 1.32e-09

TABLE III
COMPARATION NEWTON’S METHOD AND ICST METHOD. NC STANDS

FOR “NO CONVERGENCE”

It can be observed in Table III that for some problems,
even with small dimensions (Brown with n = 5), Newton’s

method does not converges, but ICST can find all the solutions
contained in the initial box in any case.

So far, we have used ICST to obtain all the solutions of a
nonlinear system of equation contained in an given domain.
In the following section we are going to use these techniques
to handle uncertainty in some dynamic systems and predict
future behaviors of such systems.

III. HANDLING UNCERTAINTY IN DYNAMIC SYSTEMS

In this section, we use ICST to observe how efficient we
are to solve dynamic systems with some degree of uncertainty.
We show that our ability to handle uncertainty allows us to
make predictions, more specifically, we proved that even in the
presence of uncertainty in some part of the data we are able
to identify initial conditions and unfold the dynamic behavior
further in time.

Example 2 (The FitzHugh-Nagumo Model): The following
nonlinear model is based on the classical FitzHugh-Nagumo
oscillator [10]. Let

f(v) = v(v − α)(1− v)

and let (veq, weq) the equilibrium point of the nonlinear
system. This system has been modified so that the equilibrium
point coincides with the initial condition, i.e. (v(0), w(0)) =
(veq, weq)

dv

dt
= f(v + veq)− f(veq)− w

dw

dt
= ε(v − γw)

(10)

we will illustrate the behaviour of the FitzHugh-Nagumo
model using the following values for the parameters: α =
0.139, ε = 0.008, γ = 2.54, v0 = veq = 0.15, w0 =
weq = −0.028, the domain t = [0, 10] was discretized using
∆t = 0.1.

After discretization, we are required to find the solutions to
the nonlinear system of equations in the traditional manner for
three different initial conditions: v0 = 0.20, v0 = 0.15, and
v0 = 0.1. with the corresponding solutions named vu, v, and
vl respectively. The graph representation is shown in Fig. 4.

Uncertainty in the initial condition: Let us use ICST
to solve (10) with uncertainty in the initial condition v0 =
[0.1, 0.2]. We obtain the numerical approximation to the inter-
val solutions for both functions v and w, and we name them
Iv and Iw respectively.

The numerical solutions Iv and Iw are interval vectors,
which means that for any ith coordinate, Ivi = [Ivi, Ivi],
and Iwi = [Iwi, Iwi]. Now, by comparing Iv with the real
solution corresponding to v0 = 0.10, and Iv with the real
solution corresponding to v0 = 0.20, we obtain the following
results:

||vl − Iv||
||vl||

= 0.0118

||vu − Iv||
||vu||

= 0.0061

(11)

Fig. 4. Solutions to the FitzHugh-Nagumo, vu for v0 = 0.20, v for v0 =
0.15, and vl for v0 = 0.10, for all v0’s the initial condition for w is w0 =
−0.028

The relative errors in (11) proves that, in this particular
case, we can use either real or ICST to handle uncertainty
in the initial condition. Let us see if we have similar results
when we are dealing with uncertainty in a future data value.

Uncertainty in a future value of the data: We can simulate
a future data point with uncertainty to quantify the relationship
between the quality of data and the quality of the prediction.
We use the values of Iv to simulate the uncertainty in some
nodes v(ti) = vi.

Let us start with the real case procedure: having uncer-
tainty, for instance, vi = [vi, vi]. We can determinate the
real values {vl0, vl1, . . . , vi} using backward difference by
taking the initial condition as vi. Using vi as the initial
condition and through the same procedure we obtain the real
values {vu0, vu1, . . . , vi}. We can obtain the forward values
{vli+1, vli+1, . . . , vlN} and {vui+1, vui+1, . . . , vuN}, through
the same procedure by using forward difference. It is expected
that vl0 < 0.15 < vu0 and wl0 < −0.028 < wu0 since they are
obtained from vi < vi. In the fourth column of Table IV, we
can observe that all values are negatives indicating that wu0 <
wl0. We can also see that v0 = 0.15 /∈ [0.128687, 0.146318]
for v90. This behavior is represented in Fig. 5, which is a
magnification of the solution corresponding to v90.

In the above example, it is observed that the solution
obtained through real method is not reliable since it does
not satisfy the constraints. To overcome these issues, we can
benefit from ICST using symbolic expressions to solve the
system of nonlinear equations over the interval given by the
vector Iv as the initial condition. The results obtained are
shown in Table IV. Comparing the results with the ones
obtained through real procedure over the interval v90, it is
observed that v0 ∈ Iv0 and w0 ∈ Iw0. In addition, the solution
Iv encloses the solution v. Table. IV.

In this example, we showed how we can incorporate ICST
to handle uncertainty in dynamic systems, and its applications
in determining the initial condition of such systems and
predicting their future behavior.

In the following section, it is shown how we can predict

Fig. 5. FitzHugh-Nagumo, close up of the function with uncertainty in v90.
It can be observed how both v and w are not enclosed by the computed
solution.

ICST Real
vi w(Iv0) w(Iw0) vu0 − vl0 wu0 − wl0

v10=[0.1540 , 0.2868] 0.1856 0.0021 0.1029 -8.36e-04
v20=[0.2236 , 0.3984] 0.2959 0.0051 0.1010 -0.0020
v30=[0.3145 , 0.5298] 0.4249 0.0090 0.0963 -0.0036
v40=[0.4297 , 0.6573] 0.5490 0.0138 0.0885 -0.0052
v50=[0.5603 , 0.7512] 0.6394 0.0193 0.0782 -0.0065
v60=[0.6799 , 0.8035] 0.6892 0.0252 0.0667 -0.0072
v70=[0.7629 , 0.8259] 0.7100 0.0310 0.0539 -0.0069
v80=[0.8069 , 0.8321] 0.7130 0.0362 0.0379 -0.0056
v90=[0.8248 , 0.8311] 0.7046 0.0429 0.0176 -0.0029

TABLE IV
COMPARISON BETWEEN REAL AND INTERVAL METHOD

the behavior of a shock wave when this is modeled by the
well-known partial differential equation: Burger’s equation.

IV. APPLICATIONS

An application involving many variables with uncertainties
is vehicles under-body blast simulations [11].

Knowing the data in any instant of time allows us to
assess impacts on vehicles and personnel safety, as well as
study configurations critical in the design and decision-making
stages.

Under-body blast is a shock wave and as such is modeled by
the Burger’s equation. In the following, we study the Burger’s
equation and then we embed some uncertainty in one of its
parameter to observe how the behavior is affected by it.

Example 3 (Burger’s equation): Consider the partial differ-
ential equation:

∂U(x, t)

∂t
+

∂f(U(x, t))

∂x
= g(x), (12)

where U is the unknown conserved quantity (mass, density,
heat etc.), f(U) = 0.5U2 and in this example, g(x) =
0.02 exp(0.02x). The initial and boundary conditions used
for the above PDE are: U(x; 0) ≡ 1; U(0; t) = λ, for all
x ∈ [0; 100], and t > 0.
where λ is considered as the uncertainty parameter.

Let us solve (12) with no uncertainty λ = 4,. Using
discretization, we obtain the solution presented in Fig. 6.
Now, let us find the solution to (12) using ICST. Given
λ = [3.5, 4.5], we obtain the interval solution represented in
Fig. 7. The interval solution clearly encloses the solution for
λ = 4.

Fig. 6. Graphical representation of the solution of (12)

Fig. 7. Graphical representation of the interval solution of (12)

V. CONCLUSIONS AND FUTURE WORK

Using Interval Constraint Solving Techniques (ICST), we
were able to rebuild the initial conditions as well as to predict
the future behavior of a dynamic system with uncertainty.

In this article, we showed that, when the system is quasi-
linear, the prediction done with this technique is highly ac-
ceptable (12).

Dealing with highly-nonlinear dynamic systems has proven
to be a challenge. Our goal is to improve the already existing
interval arithmetics techniques as well as to develop new
methods to reduce the overestimation computation.

ACKNOWLEDGMENT

This work was supported by Stanford’s Army High-
Performance Computing Research Center funded by the army
Research Lab, and by the National Science Foundation award
#0953339.

REFERENCES

[1] J.L. Gevertz, Z. Aminzare, K.-A. Norton, J. Perez-Velazquez, A. Volken-
ing, and K.A. Rejniak, Emergence of anti-cancer drug resistance:
exploring the importance of the microenvironmental niche via a spatial
model. In T. Jackson and A. Radunskaya, editors, Applications of
Dynamical Systems in Biology and Medicine, volume 158 of The IMA
Volumes in Mathematics and its Applications, pages 1–34. Springer-
Verlag, 2015.

[2] L., Rondoni and R. F., Streater, Chemical reactions as dynamical systems
on the interval. Journal of Statistical Physics, 66(5-6), 1557-1574. 1992.

[3] T., Palmer, Predicting uncertainty in forecasts of weather and climate.
Rep. Progr. Phys. 2000, 63, 71–116.

[4] P. Castiglione, M., Falcioni, A., Lesne, A., Vulpiani, Chaos and Coarse
Graining in Statistical Mechanics, Cambridge University Press: New
York, NY, USA, 2008.

[5] E., Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability,
Cambridge Univ. Press: Cambridge, UK, 2003.

[6] E., Lorenz, Predictability: A problem partly solved. In Proceedings of the
Seminar on Predictability, ECMWF, Shinfield Park, Reading, England,
1996; Volume 1, pp. 1–18.

[7] L. Granvilliers, and F. Benhamou, RealPaver: An Interval Solver
using Constraint Satisfaction Techniques.. ACM Trans. on Mathematical
Software 32(1), 138–156, 2006.

[8] V. Kreinovich, G. Xian, M. Ceberio, Et Al., Towards Combining
Probabilistic and Interval Uncertainty in Engineering Calculations: Al-
gorithms for Computing Statistics under Interval Uncertainty, and Their
Computational Complexity. Reliable Computing 12(6), 471–501, 2006.

[9] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis (1 edition), SIAM, Philadelphia, 2009.

[10] R. FitzHugh, A impulses and physiological states in theoretical models
of nerve membrane. Biophys. J. 1, 445–466. 1961.

[11] J. White, A Trajectory Piecewise-Linear Approach to Model Order
Reduction and Fast Simulation of Nonlinear Circuits and Micromachined
Devices IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 22(2), 155–170, 2003.

[12] I. Araya, B. Neveu, G. Trombettoni, An interval extension based on
occurrence grouping Computing, 94(2), 173–188, 2012.

[13] J. Jaffar, M. Maher, Constraint Logic Programming: a Survey The
Journal of Logic Programming, 19/20, 503–58, 1994.

[14] A. K. Mackworth, Consistency in Networks of Relations Artificial
Intelligence, 8, 1, 99–118, 1977.

[15] R. B. Kearfott, Verified branch and bound for singular linear and
nonlinear programs: An epsilon-inflation process, April 2007. Available
from the author.

[16] S. Caroa, S. Chablata, A. Goldsztejnb, D. Ishiic, C. Jermannd, A
branch and prune algorithm for the computation of generalized aspects
of parallel robots Artificial Intelligence, 211, 34, 2014.

