
Comparison of Strategies for Solving Global
Optimization Problems Using Speculation and

Interval Computations
Angel F. Garcia Contreras and Martine Ceberio

Department of Computer Science
The University of Texas at El Paso, USA

Email: afgarciacontreras@miners.utep.edu, mceberio@utep.edu

Abstract—Many real-life situations require that a match be-
tween quantities, behaviors, etc. be found. That is the case, for
instance, when scientists try to find a fit between two sets of data,
or a set of observations and a given model. Often such situations
require that the minimum (or maximum) of a computed differ-
ence be found. These situations can be modeled as optimization
problems. There exist multiple flavors of optimization problems:
constrained and unconstrained (whether we are looking for the
minimum – or maximum – of a function over the entire search
space or only within the subspace of elements that satisfy some
given constraints); local and global (whether we are looking
solutions for the minimum within a neighborhood or among the
whole search space); continuous, discrete, and mixed (whether the
parameters of the problem at hand take their values all in discrete
domains, all in continuous domains, or in a mix of these). In this
article, we focus on continuous unconstrained global optimization
and algorithms to solve such problems. Without loss of generality,
we will discuss minimization.

There exist many algorithms to address such problems. Most
are based on interval computations for they provide a way to
conduct a fully covering search in continuous domains where
enumeration of alternatives is impossible. In this article, we
propose to look at a specific type of algorithm: known as
speculation, which consists in betting on which value is going to
be the minimum we are looking for. More specifically, we propose
to improve our speculative approach using different strategies.
We present and discuss the results of a series of experiments
comparing the performance of the speculative algorithm with
the proposed strategies.

I. INTRODUCTION

Many real-life situations require that a match between
quantities, behaviors, etc. be found. That is the case, for
instance, when scientists try to find a fit between two sets
of data, or a set of observations and a given model. Often
such situations require that the minimum (or maximum) of
a computed difference be found. These situations can be
modeled as optimization problems. There exist multiple flavors
of optimization problems: Optimization can be constrained
or unconstrained whether we are looking for the minimum
– or maximum – of a function over the entire search space
or only within the subspace of elements that satisfy some
given constraints. Optimization can be local or global whether
we are looking solutions for the minimum within a neighbor-
hood or among the whole search space. Optimization can be
continuous, discrete, or mixed (whether the parameters of the
problem at hand take their values all in discrete domains, all

in continuous domains, or in a mix of these. In this article,
we focus on continuous unconstrained global optimization and
algorithms to solve such problems. Without loss of generality,
we will discuss minimization only.

There exist many algorithms to address such problems.
Unlike local algorithms that can very quickly identify a
reasonably good solution to an optimization problem (but
with no guarantee that it would be even close to the best
solution), global search algorithms guarantee that their result
is a global optimum, trading speed for rigor and reliability.
There are usually two approaches to global search: analytical
and exhaustive. Analytical methods require that the problem
be with certain conditions or properties that can guarantee
optimality of the solution. Exhaustive search usually follows
a divide-and-conquer approach. The most well-known type
of exhaustive search algorithm is Branch & Bound. The idea
behind Branch & Bound is to divide the original search area
into progressively smaller sub-spaces and at each step of the
way, to evaluate the likeliness that the sub-space at hand can be
/ contain a solution. Most Branch & Bound-based continuous
optimization algorithms rely on interval computations for they
provide a way to conduct a fully covering search in continuous
domains where enumeration of alternatives is impossible.

We recall existing Branch & Bound algorithms and solvers.
BARON [1] is a commercial award-winning mixed-integer
nonlinear optimization solver that uses interval arithmetic,
convexification and relaxation to solve non-convex optimiza-
tion problem. While computationally efficient, BARON uses
non-rigorous relaxations and cannot guarantee the solutions it
finds are global optima. GlobSol [2] is an open-source solver
for solving unconstrained / constrained global optimization
and nonlinear systems of equations that uses rigorous interval
arithmetic, guaranteeing the global quality of its reported
solutions. ALIAS-C++ [3] is a library of algorithms for solving
optimization and systems of equations. While not exactly an
optimization solver, it implements a parameterized branching
algorithm and consistency algorithms with the Profil/BIAS [4]
fast interval library. IbexOpt [5] is a module of the Ibex
constraint processing library. This module uses Branch &
Bound with the interval techniques of Ibex to find guaranteed
solutions to global non-convex optimization problems. For rig-
orous solvers, the challenges lie in reducing the overestimation

introduced by interval arithmetic, and improving execution
time through new sub-problem generation and selection heuris-
tics.

In previous work, we presented a speculative optimization
method [6], [7] that includes the objective as an additional
branching dimension. It has similarities with the graph subdivi-
sion methods presented by Shary [8], which also introduces the
range of the objective as a branching dimension. Speculative
optimization places a greater priority on dividing the objective
over the domain. In this article, we present strategies to
improve this speculative algorithm. We present and analyze
the results of experiments that compare the execution time for
various configurations of the speculative algorithm as well as
a standard Branch & Prune algorithm.

II. BACKGROUND
A. Optimization

Unconstrained continuous global optimization problems are
defined as follows:

min
x∈x

f(x) (1)

where f : x ⊂ Rn → R is called the objective function. In
this work, we focus on minimization without loss of generality
since maximizing is equivalent to minimizing −f . Function f
is continuous, potentially non-convex functions. Solving such
an optimization problem consists in identifying x∗, a value of
f ’s variable x, such that ∀x ∈ x, f(x∗) ≤ f(x).

Search algorithms used to find solutions of optimization
problems are divided in two categories: local search and
global search. Local search usually starts with an initial guess
x0 ∈ [x]. Based on this guess, the algorithm iteratively
generates new points xi s.t. f(xi) ≤ f(xi−1), until there
is no improvement or f(xi) = f(xi−1). Local algorithms
converge quickly to the solution nearest to the initial point,
but may struggle (or even not converge) if the initial point is
far from a solution. To find better solutions, some algorithms
restart their search from different initial points, recording the
best solution. They find a local solution that has no guarantee
of being the best solution in the domain, only the best in
a neighborhood of x0. However, certain situations require
finding the guaranteed best value of the objective. Global
search methods guarantee finding x∗ that yields the best
objective value. These algorithms consider the entire domain
of x. The strategy consists in iteratively reducing the space of
the search, generating smaller subdomains. The search ends
when sufficient precision has been reached. Such algorithms
rely on interval computations to be able to conduct such
search: in what follows, we provide some background about
intervals and domain reduction, as well as how they integrate
into a global search algorithm.

B. Interval Computations

An interval xi =
[
xi, xi

]
is the set of all real numbers x

such that xi ≤ x ≤ xi. We can I the set of all such intervals.
More generally, we call a box X the Cartesian product of
intervals: e.g., X = x1 × x2 × . . .× xn ∈ In.

Interval arithmetic extends real arithmetic to intervals. All
arithmetic operators ▷◁ ∈ {+,−,×,÷} are redefined on
intervals in a way that ensures that:

{x ▷◁ y | x ∈ x, y ∈ y} ⊆ x ▷◁ y

Similarly, all real functions f can be “extended” to intervals,
as f , by systematically extending each of the operators of their
symbolic expression to intervals. As a result, we have that:

∀X ∈ In, {f(x) | x ∈ X} ⊆ f(X)

More details about interval analysis can be found at [9].

−8.5

−4.5

−0.5

3.5

0.5 0.7 0.9
x

f(x)

Fig. 1. Interval evaluation of a function

As we can observe on Fig. 1, interval computations allow
us to enclose the range of function f over interval x, but
the enclosure is not exact. This is caused by the so-called
dependency problem [9], which causes interval evaluations
to often overestimate the computed quantities. Even simple
function such as f(x) = x − x produce an overestimation
when extended to intervals. Indeed if we extend f to intervals
and evaluate it on x = [1, 2], then we obtain f(x) = [−1, 1].

Dealing with overestimation to yield more exact interval
evaluations is the subject of many pieces of research work: for
instance, symbolic transformations that reduce the number of
times a variable appears in the expression [10], reformulations
of the evaluation such as centered form [9], and evaluation
of the function using the monotonicity of each term of the
expression [11] However, this is not the focus of this article
and the only property that matters here is that we can rely
on the fact that intervals provide a correct enclosure of the
quantities being computed (in particular in our case, the range
of objective functions).

C. Contractors

Constraints limit the values parameters can take in a given
domain. Although in this work we focus on unconstrained
optimization, interval-based solving techniques usually model
problems as constraints to reduce the size of the (box) do-
mains: they combine contraction of the domains via contrac-
tors with domain splitting. Figure 2 illustrates the application
of a contractor to a domain. Contractors C are iterative
operators that attempt to reduce the domain at hand based
on each individual constraint of the problem, shrinking the
respective domains of each of the parameters of the problem
to exclude values that violate the constraints. As a result, when
a contractor is applied to a domain x, we have: x = C(x)∩x.

The desired outcome of this is that either x be reduced or
discarded (when C(x) ∩ x = ∅).

0.0

4.0

−4.0

−8.0

0.7 0.9

f(x)

x

g(x)

x′

Fig. 2. Domain contraction: x is reduced to x′ using constraint g(x) ≤ 0.

HC4 [12] is an example of a popular interval constraint-
based contractor, which we use in our work. There exist many
other contractors. For instance, the Interval Newton method [9]
solves equations using intervals: F (x) = 0 with F : D ⊂
Rn → Rn. The real-number version of the Newton method
starts with an initial point of the search space and iteratively
improves the evaluated point until it converges to a solution
(if it converges). The interval version of this algorithm starts
with an initial interval box D in which the fixed-point solution
is sought. The algorithm iteratively shrinks this box domain
while still containing the zero of F if it is there. The Interval
Newton operator as a contractor N works as:

Dk+1 = N(Dk) ∩Dk,

starting with an initial box D.
A variation of the Interval Newton method is the Krawczyk

method [9]. Just like Newton, this algorithm solves systems of
non-linear equations using intervals. The core element of this
method is the Krawczyk operator, defined as:

K(x) = y − Y f(y) + {I − Y F ′(x)}(X − y),

where Y is a nonsingular real matrix approximating the
inverse of the real Jacobian matrix F ′(m(x)) with elements
F ′(m(x))ij = ∂fi(x)/∂xj at x = m(x), y is a real vector
contained in the interval vector x, and m(x) is the vector
containing the midpoints of box x. If K(x) ⊆ x, then both x
and K(x) contain a solution to the system of equations. The
Krawczyk method is the application of K(x) to the definition
of Interval Newton:

xk+1 = K(xk) ∩ xk,

where x0 is a starting interval box s.t. K(x0) ⊆ x0, and the
solution box is x∗ = xk s.t. xk+1 ≈ xk [9]. In the work we
present in this article, we use the Krawczyk operator.

D. Interval Branch & Bound, Branch & Prune

Interval Branch & Bound (IB&B) is a search algorithm
that combines evaluation of parts of the search space to
check on their likeliness to contain solutions with domain
splitting, which aims to separate solutions. When used for
optimization, the objective function is evaluated using interval
arithmetic. A sub-box is discarded if the objective function’s

evaluation shows that it cannot contain a global minimum.
After evaluating a box, if it still potentially contains a solution
and it is not a small-enough box, it is split into two smaller
sub-boxes and these boxes are stored for future review. When
a box is not discarded and cannot be split because it is
now too small, it is kept aside as a potential solution and
not explored again. This exploration-and-sub-division process
continues until there is no more box to be explored. The
outcome of an IB&B algorithm is a set of narrow boxes that
contain all possible values of the parameters for which the
objective function reaches it minimal value.

In general, IB&B is improved with contractors. Instead
of simply evaluating the objective function and keeping,
discarding, or splitting boxes, each explored box undergoes
a contraction step that allows to split much smaller boxes
or even to discard them altogether. This variation is called
Branch & Prune (B&P). Figure 3 shows a general sketch of
this algorithm.

x+x−x−

gc

x−
r

x+

gc

x+
r

Fig. 3. Branch & Prune, algorithm sketch. The sub-domains x+ and x−

are contracted into x+
r and x−

r using the constraint-based contractor gc

III. SPECULATION IN GLOBAL OPTIMIZATION

In classic IB&B and B&P, search-space partition is an
essential component and drive that support reliable results.
Both algorithms bisect the interval domain of one variable at
a time, traditionally creating two new domains to be searched.
There exist different heuristics to select this variable. Common
selection methods include round robin, largest-first and smear-
based.

In [7], [13], we proposed a different approach, which
suggest to focus the splitting on one dimension only: the range
of the objective function, and to update it as we discover new
values of the objective function. In what follows we recall
this approach, propose improvements along with combination
strategies.

A. Speculative optimization

In previous work [7], [13], we presented a speculation-based
B&P algorithm for global optimization with a new bisection
rule. Our speculative algorithm:

1) First evaluates the objective function using interval arith-
metic to obtain a range that contains all possible values
for the objective, fI =

[
f, f

]
;

2) Second, instead of bisecting the search space, the al-
gorithm splits fI into two sub-ranges,

[
f,m (fI)

]
and[

m (fI) , f
]
;

3) Next, the algorithm speculates by “betting” on the lower
of the two sub-ranges.

a) This “bet” becomes a constraint on the objective,
which a contractor will enforce to reduce the size
of the search space.

b) The range not selected as a “bet” is saved in case
the original bet is wrong, meaning there is no
solution in that initial “bet”.

Figure 4 shows the range-splitting part of the algorithm.

x

f mf f

f(x)

f mf

Cf

x−
r

mf f

Queue

Fig. 4. Speculation algorithm sketch. x is contracted into x
−
r using the

objective function-based contractor Cf with interval [f,mf]. x and the
interval [mf , f] are stored for possible future exploration.

B. Strategies for speculative optimization

In what follows we present our proposed improvement to
the above speculative algorithm along with other strategies to
further improve it.

The speculation graft strategy is a hybridization of spec-
ulation and the traditional B&P approach. When contraction
fails to prune the domain during a speculative process, the
algorithm switches to a B&P method. This method is similar
to grafting a branch of a tree into the branch stump of another.
This B&P graft keeps the “bet” that produced it as initial
bounds on the objective, improving or discarding them through
domain bisection and contraction. The algorithm returns to
speculation only if it discards all the sub-domains created by
the B&P graft. Figure 5 provides a general overview of this
strategy.

The preconditioning strategy uses an inexpensive local
search to set an initial upper bound on the sought optimum
value of the objective function. Local search finds a local
minimum, which becomes the new upper bound of the initial
range of the objective. The algorithm begins speculation
bisection using this new smaller range instead of f(x) in the
original speculative algorithm.

The Krawczyk contraction strategy uses the interval gra-
dient of the objective function. The gradient of a function
▽f is a vector containing the first order partial derivatives
of the objective function. The interval gradient results from
evaluating interval extensions of the partial derivatives in

. . . Queue

Speculation

= No Contraction

.

B&P

Fig. 5. Overview of the grafting strategy. The algorithm stops bisecting
the range of the objective if it cannot contract the domain, and starts a B&P
sub-tree execution.

the gradient. Minimum and maximum points x∗ evaluate
to ▽f(x∗) = 0. The Krawczyk contraction strategy uses
the interval gradient as a system of linear equations and
attempts to solve it using the Krawczyk method and its main
components, the Krawczyk operator. The Krawczyk operator
contracts the domain if there is a unique point solution to
the system of equations in that box. Once a domain is
contracted with the Krawczyk operator, the algorithm executes
the complete Krawczyk method, which returns a box whose
width is less than a predefined ϵ containing the point solution.
If the Krawczyk contractor returns a reduced box, this box
becomes a solution candidate. When used in the context of a
B&B algorithm, this concludes the exploration of a particular
sub-domain, and may set a new bound on the objective. There
might be additional sub-domains to explore, as long as these
domains can contain an improvement.

IV. EXPERIMENTS

In this work, we examine the effects of different strategies
to improve speculative optimization.

The algorithm is implemented in Python 2.7, using the
BigFloat floating-point library to build our custom interval
arithmetic library. Functions are evaluated using natural in-
terval arithmetic. The base contractor is HC4. For B&P, a
domain is split using Ratz’s bisection [14], which selects a
variable xi = [ai, bi] s.t. ∥di∥ (bi − ai) → max, where di
is the interval approximation of the partial derivative of the
objective f on variable xi.

Local search is done through the SciPy [15] implemen-
tation of the BroydenFletcherGoldfarbShanno algorithm for
box constraints (L-BFGS-B [16]). The BFGS algorithm is
a Quasi-Newton method that uses an approximation of the
Hessian matrix of the objective to compute an improvement
of the optimum candidate on each Newton iteration, quickly
converging to a local solution. The limited-memory box-bound
version of the algorithm (L-BFGS-B) uses a smaller set of
vectors instead of the entire approximation of the Hessian, and
delimits the domain using box constraints. The initial point

selected for the L-BFGS-B algorithm is always the midpoint
of the current box.

Six versions of the algorithm are part of this experiment.
They are:

• Type A: Traditional IB&P, using interval arithmetic to set
the bounds of the objective and HC4 as contractor.

• Type AK : Same as type A, but with a Krawczyk contrac-
tion strategy after the HC4 contraction.

• Type B: Speculation graft strategy, with the first “bet”
from an initial interval evaluation of the objective func-
tion and using HC4 to contract the domain.

• Type BK : Same as type B, but with a Krawczyk contrac-
tion strategy after the HC4 contraction.

• Type C: Speculation graft strategy combined with the
preconditioning strategy and using HC4 to contract the
domain.

• Type CK : Same as type C, but with a Krawczyk contrac-
tion strategy after the HC4 contraction.

Each version of the algorithm was tested on a set of 55
unconstrained continuous optimization problems, with ϵ = 104

and a timeout of 1 hour. The results of each execution are
compared w.r.t. the quality of the returned interval solution.
The solution can be a global minimum (that is, it is an
enclosure of the global minimum), an approximation of the
minimum (an interval whose bounds are less than ϵ away
from the global minimum), a local minimum, or a timeout
without finding any type of solution. The number of problems
for which each of the algorithms found solution are reported
in Table I.

Type A AK B BK C CK

Global Min 3 19 6 24 36 37
Approx 0 2 7 3 1 2
Local Min 27 11 20 9 1 0
Timeout 25 23 22 19 17 16

TABLE I
TYPES OF SOLUTIONS IN TEST RESULTS

To measure performance over time, we use the ratio of
improvement between different implementations of the algo-
rithm. The ratio of improvement between algorithms X and Y
is RXY = tX/tY , where tX and tY are the execution times
for algorithms X and Y on a given problem. If RXY > 1,
algorithm Y has better time performance than algorithm X .
The closer to 1 the value of RXY is, the more similar the time
performance of both algorithms is. Table II reports compar-
isons between all versions of the algorithm that implement the
Krawczyk contractor on the problems for which those versions
found the global optimum.

Finally, Table III shows the ratio of improvement between
the preconditioned speculative algorithm with and without
Krawczyk method. Ratios in italics represent similar perfor-
mance for both strategies. Ratios in bold show a considerable
improvement of the Krawczyk version over the regular one.
In the remaining ratios, the regular speculative version outper-
forms the Krawczyk version, with the grey background ratios
representing outperformance by a great margin (at least 1 to
10).

Test Case N AK vs BK AK vs CK BK vs CK

himmelblau 2 0.9785 3.6157 3.6951
rotated 1 1 2.0464 0.9509 0.4647

rotated 16 16 3.0331 2.2161 0.7306
rotated 32 32 3.0176 2.4689 0.8182
rotated 64 64 3.0000 2.6414 0.8805

schwefel 1 1 2.0989 0.9135 0.4352
schwefel 16 16 2.0900 0.8540 0.4086
schwefel 2 1 2.1030 0.9017 0.4288

schwefel 32 32 2.0542 0.8392 0.4085
schwefel 4 4 2.1497 0.9114 0.4240
schwefel 8 8 2.0735 0.8781 0.4235

sphere 1 1 2.0994 0.9823 0.4679
sphere 16 16 1.9809 0.9777 0.4935

sphere 2 1 2.1290 0.9946 0.4672
sphere 32 32 1.9967 0.9980 0.4998

sphere 4 4 2.0599 0.9883 0.4798
sphere 64 64 2.0187 1.0035 0.4971

sphere 8 8 2.0823 0.9754 0.4684
AVERAGE 2.1673 1.3395 0.6940

TABLE II
COMPARISON OF RATIO OF TIME IMPROVEMENT BETWEEN ALGORITHMS

USING KRAWCZYK METHOD

Analysis of results

In general, using the Krawczyk method allows to find
more global minima or approximations. For the traditional
B&P and regular speculation algorithms, Krawczyk provides a
considerable improvement on the quality of the solutions, more
than doubling the number of problems for which the algorithm
returns a global optimum. However, when using a local
search preconditioning of the upper bound with speculation
(algorithm type C), the improvement is marginal.

In terms of time performance, speculation outperforms the
baseline IB&P algorithm when using Krawczyk as a contrac-
tor. However, in most cases, the performance of the speculative
algorithm with preconditioning is similar to the baseline
algorithm. Speculation without preconditioning outperforms
the baseline algorithm and the preconditioned speculation 2
to 1.

This curious result led to a performance analysis of precon-
ditioned speculative algorithm with and without Krawczyk.
These results are presented in Table III. This shows that in
most cases (27 out of 35) preconditioning without Krawczyk
outperforms preconditioning with Krawczyk, in some cases (5
out of 10) with a performance ratio of less than 1/10.

V. CONCLUSION

We presented strategies to improve speculative optimization
algorithms, in comparison to optimization algorithms without
speculation. We conducted experiments and our results sup-
port the fact that the proposed strategies offer improvement
of optimization algorithms with and without speculation. In
particular, we showed that our speculation graft strategy com-
bined with preconditioning and Krawczyk strategies provides
the best results in terms of quality of the solution. In general,
using Krawczyk produces more accurate results. However, in
many problems that were solved using the Krawczyk strategy,
adding the preconditioning strategy yields worse performance
than not including it. A closer analysis to the performance of

the algorithms that use speculation graft and preconditioning
reveals that in most cases adding the Krawczyk contractor had
a negative impact in the time performance.

Test Case N C vs CK

himmelblau 2 2.713477360
rastrigin 1 1 0.723588885

rastrigin 16 16 0.144440207
rastrigin 2 1 0.614822167

rastrigin 32 32 0.063315548
rastrigin 4 4 0.446632008

rastrigin 64 64 0.023466829
rastrigin 8 8 0.277736337

rosenbrock 16 16 30.12882664
rosenbrock 2 1 4.431719255

rosenbrock 32 32 6.061914731
rosenbrock 4 4 16.88563292
rosenbrock 8 8 7.415862178

rotated 1 1 0.571058181
rotated 16 16 0.331458071
rotated 2 1 0.671001201

rotated 32 32 0.215177086
rotated 4 4 0.567991102

rotated 64 64 0.128064258
rotated 8 8 0.445410257

schwefel 1 1 0.549240913
schwefel 16 16 0.264245282
schwefel 2 1 0.489488090

schwefel 32 32 0.243159635
schwefel 4 4 0.397079901
schwefel 8 8 0.309797103

sphere 1 1 0.571939925
sphere 16 16 0.07739258

sphere 2 1 0.457359668
sphere 32 32 0.033275215

sphere 4 4 0.296781961
sphere 64 64 0.014708894

sphere 8 8 0.161188270
styblinski tang 1 1 1.170557069

three hump camel 2 0.999984375

TABLE III
RATIO OF TIME IMPROVEMENT OF PRECONDITIONED GRAFT

SPECULATIVE ALGORITHM WITH AND WITHOUT KRAWCZYK METHOD

We now plan to conduct a detailed study to understand at
which specific stages of the algorithm or for which classes of
problems Krawczyk should be used for optimal performance.
We will also focus on extending this work to constrained
optimization.

ACKNOWLEDGMENTS

The work presented here was partially supported by NSF
grant CCF No. 0953339.

REFERENCES

[1] M. Tawarmalani and N. V. Sahinidis, “A polyhedral
branch-and-cut approach to global optimization,” Math.
Program., vol. 103, no. 2, pp. 225–249, Jun. 2005.

[2] R. B. Kearfott, “Globsol user guide,” Optimization
Methods Software, vol. 24, no. 4-5, pp. 687–708, Aug.
2009.

[3] J. Merlet, Alias-c++: An c++ algorithms library of
interval analysis for equation systems, http : / / bit . ly /
ALIAS-C, Accessed: 05-04-2016.

[4] O. Knüppel, “Profil/bias—a fast interval library,” Com-
puting, vol. 53, no. 3, pp. 277–287, 1994.

[5] G. Trombettoni, I. Araya, B. Neveu, and G. Chabert,
“Ibexopt : un module d’optimisation globale sous con-
traintes fiable,” in 13e congrès annuel de la Société
française de Recherche Opérationnelle et d’Aide à la
Décision, France, 2012.

[6] A. F. Garcia C., X. Wang, M. Ceberio, R. Bixler, and
L. Gutierrez, “Interval optimization to predict software
quality assessment decisions,” in Proc. of 2012 IN-
FORMS Optimization Conf., Coral Gables, FL, 2012.

[7] A. F. Garcia C., “Contributions to global optimization
using interval methods and speculation,” M.S. Thesis,
The University of Texas at El Paso, Dec. 2014.

[8] S. P. Shary, “Graph subdivision methods in interval
global optimization,” Constraint Programming and De-
cision Making, pp. 153–170, 2014.

[9] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Intro-
duction to interval analysis. Siam, 2009.

[10] M. Ceberio and L. Granvilliers, “Horner’s rule for
interval evaluation revisited,” Computing, vol. 69, no.
1, pp. 51–81, Sep. 2002.

[11] I. Araya, B. Neveu, and G. Trombettoni, “An interval
extension based on occurrence grouping,” Computing,
vol. 94, no. 2, pp. 173–188, 2012.

[12] F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget,
“Revising hull and box consistency,” in Proc. of the
1999 Int. Conf. on Logic Programming, Cambridge,
MA, USA: MIT, 1999, pp. 230–244.

[13] X. Wang and M. Ceberio, “Fuzzy measure extraction
for predicting at-risk students,” in Proc. of 2nd World
Conference on Soft Computing, Baku, Azerbaijan, 2012.

[14] V. Kreinovich and R. B. Kearfott, “Where to bisect a
box? a theoretical explanation of the experimental re-
sults,” in Interval Computations and its Applications to
Reasoning Under Uncertainty, Knowledge Representa-
tion, and Control Theory. Proc. of MEXICON’98, Work-
shop on Interval Computations, 4th World Congress on
Expert Systems, 1997.

[15] E. Jones, T. Oliphant, and P. Peterson, Scipy: Open
source scientific tools for python, http://www.scipy.org,
Accessed: 2016-04-30.

[16] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited
memory algorithm for bound constrained optimization,”
SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190–1208,
1995.

