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Abstract - In traditional constraint satisfaction, constraints  g(x1, ..., z,) whose value should be made as large as pos-
are “hard” in the sense that we need to satisfy them all. In sible. In such situations, we are interested in maximiz-
many practical situations, however, constraints are “soft” in ing the given functiory(z1, ..., z,) under the given con-

the sense that if we are unable to satisfy some of them, the gtraints. This problem is calledanstrained optimization
corresponding solution is still practically useful. In such sit- problem

uations, it is desirable to satisfy as many high-priority con-
straints as possible. In this paper, we describe an optimal al- |5 general, constraint satisfaction and constraint optimiza-
gorithm for solving the corresponding soft constraint prob- tion problems are NP-hard; see, e.g., [KRE 97], [VAV 91]

lem. In practice, however, there exist many efficient tools for
Keywords—soft constraints, optimal algorithm solving these problems, including numerous efficient tools

that provide validated solution to these problems.
I. WHY CONSTRAINTS?

. . . . Il. WHAT ARE SOFT CONSTRAINTS?
In many areas of science and engineering, we are interested

in solving design and control problems. Usually, in thesﬁw many practical situations, if we formulate all the users’

pr oblems., the users describe se_vemistralntsthat_ thg de_— desired as constraints, we often end up with an inconsistent
sired design or control must satisfy, and our objective is t et of constraints. For example, a user may want to design
find a design (correspondingly, a control) that satisfies

th traint plane that is as fast and as fuel-efficient as the existing
ese constraints. Airbus or Boeing planes, but that will decrease the noise

In mathematical terms, a design or a control can be ustgel 10 0.

ally represented by the values of the relevant numericghe reason why constraints are inconsistent is that while
parameters: = (z1,...,,). For example, an airplane gome of these constraints are absolute requirements (e.g.,
design can be described in terms of the geometric paraMéssery constraints for a plain), other constraints are simply
ters of the plane, the thickness of the plates that form “}%commendations, desires, that a user wants to be imple-

airplane’s skin, the weight and power of the engine, etqnenteq if possible — but that can be dismissed if it is not
A typical constraint describes a limitation on some char.

e § X i , possible to satisfy them. Such “not required” constraints
acteristics of th_|$ design: e.g., the airplane’s speed musta ~alledsoft constraints
exceed a certain threshold, its fuel use must not exceed a
certain amount, and the overall cost must be within giveBoft constraints are an important research topic; see, e.g.,
limits. Each of the corresponding characterisijdspeed, the proceedings of the latest conference [PRO 04] and ref-
fuel use, etc.) can be uniquely determined by the desigrences therein. Our own work in soft constraints is de-
y = f(x1,...,x,) for some computable functiof Thus, scribed, e.g., in [BEN 03], [CEB 03].
each constraint can be described as either an inequality of
the typef(z1,...,zn) < yo OF f(21,...,2n) > yo—0OraAS || PRIORITY APPROACH TO SOFT CONSTRAINTS:
an equalityf(z1,...,z,) = yo (for example, if we want A BRIEF DESCRIPTION
to design the fastest airplane within a fixed cost).

The main idea behind this approach is that if we cannot

In many real-life situations, the constraints are consisten{gatisfy all the constraints, we should at least satisfy as many
i.e., there exist designs that satisfy all these constraints. §straints as possible.

this case, itis desirable to find a design that satisfies a given

finite set of inequality/equality-type constraints. The corre©One of the natural approaches to soft constraints is there-

sponding problem is called the problemaminstraint satis- fore to ask the user tprioritize their constraints, from the

faction absolutely required to the less required. Once the user
sorted all his/her constraints from the most required to the

Often, in such situations, there are many different designgast required, into a sequen€g = Co > ... = C,, we

that satisfy the given constraints. In this case, it is desifry to find the largest possible valie= kopt for which all

able to select one of these designs. Users can often dfe constraint€’;, Cs, . . ., Cy, are still consistent.

scribe their preference in terms of afjective function



IV. PRIORITY APPROACH TO SOFT CONSTRAINTS: All we can do is check, for several valugs whether the

A COMPUTATIONAL QUESTION corresponding constraint sets are consistent. If we know
T . . isfact | bl . that constraints sets are consistent for the valyes . , k.,
e existing constraint satisfaction tools enable us, givelhg inconsistent fok = k..., k/, then this knowledge

constraints, either to find a design that satisfies these cq@-gquivalent to knowing that the constraints are consistent
straints, or to conclude that the given constraints are incon-

sistent. for k— % max(ky, ..., k,) and inconsistent fok

There are many different ways how we can use one of thes@n(k{, ..., k).
tools to solve soft constraint problems. For example, wi

can sequentially apply this tool to constraints sgf5 },
{C1,C5}, ..., until we find the first valué for which the
corresponding set is inconsistent. Then, the previous valdethe set of the firsk~ inequalities is consistent, while

kopt = 1 —1is the desired largest and the corresponding , the set of the first* inequalities is inconsistent.
design is the desired one.

+ def

fh other words, at each stage of the computations, we know
thatk is within an intervalk—, k*] —i.e., that:

) ) ) ) If k™ = k= +1, then we know that~ is the desired largest
A (potential) problem with this approach is that when th&,, e for which constraints are consistentitf > k= + 1,

number of constraints is large, the constraint satisfactiofap, to continue looking fok,,., we must select a value
1 opts

tools take a long time to run, so if we have to run the t0Q;iin the interval[k—, k*] that we will check next. This
for many different sets, we make the process even slowe,, ;o can, in general, depend on the number of a step.

Alternatively, we can, e.g., use bisection to find the desireg
valuek,p. At each stage of this iterative method, we have
an interval[k~, k*] that is guaranteed to contain this de-pefinition 1. A methodis a mapping that maps each pair
sired value, i.e., for which the system of the fikst con- (I, ), where:

straints is consistent while the system of the firstcon-
straints is inconsistent. « [ is an integer-valued intervalk—, k], where0 <

. . . k= <k™ <nandk™ >k~ +1,and
Initially, £~ = 0 (if we have no constraints, then, of course, =n +

the problem is consistent) aid” = n (we cannot satisfy * IS & positive integer (= number of step)
all constraints: this is the definition of the soft constraininto an integerk,q; from the open intervalk—, k).
problem).

0, in general, we can define theethodas follows:

One can easily see that each method generates a strategy
def  that eventually leads to the desired valug:: once we

Then, sequentially, we test whether the midpdipt = o P .
Lk + k:i)/2j ofythe interval is consistent opr n%t and check whether the system of constraints is consistent or
' 'not, we get a new intervdk ~, kpext] OF [kpext, k7). FoOr

depending on the result of this test, replace the original in- -
terval with a half-size onefk—, k] or [k,,, k*]. On each example:

iteration, the interval decreases in half, so aftgr(n) it-  « the sequential searcH corresponds to the method in
eration, we get the interval of width 1 — i.e., we get thavhich we seleck,o,c = &~ + 1;

desired valuér.,. The advantage of this technique is thay, pisectionB corresponds to the method in which we se-
we need fewer iterations to find but the disadvantage is |ect ;... = | (k= + k+)/2].

that some of these iterations may require analyzing much

more constraints # as opposed té < n—and thus, may How can we estimate the worst-case complexity of each

take much longer. method? As we have mentioned, the problem of constraint
Other methods of finding the optimalare possible. The satisfaction is known to be NP-hard. This means, crudely
question is: which of the methods is optimal? speaking, that the computation time grows exponentially

with the number of constraints. For most NP-hard prob-

Of course, different methods may be optimal for d'ﬁerenfems such propositional satisfiability, the actual worst-case

cases. What we would like to do is find the methods fo{:omplexity of the known algorithms grows &§. For

which some reasonably defined “worst-case CornpUt""t'olgoolean—type constraints, it is therefore reasonable to as-

:Z?risls optimal. Let us formulate this problem in PreCIS&ume that the computational complexity of checking the

consistency of the system &fconstraints is proportional

V. PRIORITY APPROACH TO SOFT CONSTRAINTS: to 2.
TOWARD FORMALIZING THE COMPUTATIONAL o ) o o
QUESTION Similarly, in a more general case of finite constraints in

which each variable hgs > 2 different values, we need,
We would like to describe the best strategy of findkag;.  in the worst casep” checks to check all possible values
In order to do that, we need to explain what we mean by af these constraint variables. It is therefore reasonable to
strategy. assume that in general, the computational complexity of



checking the consistency of the systemkotonstraints all possible integers betweér andk™, we always select
grows ag” for somep > 2. knext = kK~ + 1 as the next value to check. This means that
in every other method/ # S, there exists an interval in
which we select a valuk,..; > &~ + 2. In this case, if the
actual valuek,,, is equal to the correspondirig, then in
this method, we check bothand> k+2. Later on, we still
need to check the valuet 1 —to make sure thatis indeed
For each value ok, the ideal case is when someone’she largest consistent value. Thus, for thishe method\/
intuition informs us of the correct valug,,.. In this case, spends at least tinig,; (k) > p*+p**+1+pk+2. This lower
we do not need to check for too many different valies bound can be described &g, (k) > p**1- (p+1+p~1),
all we need to do is check whether indeed the system bEnce
first k constraints is consistent while the system of the first
k + 1 constraints is inconsistent. In this case, the overall Tar () ptltpt
k+1 M
expenses are equal b + p**L. On(k) = T > =

For every method/ and for every valué of k., we can
now define the overall tim&), (k) that this method spends
on this case as the sum of the valpésfor all &’ for which
this method checks consistency.

In real life, no such intuition is available, so we have to test

more values: and thus, spend more time. The smaller the

“overhead” in comparison with the ideal case, the bettef0 complete our proof, we must show that
We can therefore define tlwwerheadO, (M) of a method

M as

p—|—1+p‘1> 1
def T (k) T+pt “(A—p ) -(1+p 1)
OP(M)ng?X - - p ( p~ 1) ( p~1)
p¥+p

Multiplying both sides of this inequality by the denomina-

:;ettﬁ.z 2f betf|xfedl.| W(ihsa(ljy thta;[] a Thethdﬂ :f otptlmal_bl tor of the right-hand side, we get an equivalent inequality
or this p if out of all methods, it has the smallest possible _p-2 > 1, ie., equivalently, thap® — p? — 1 > 0.

. o p
overhead:O,(Mypt) = rr}&[nOp(M). Now, we are ready " ~.0 show that the equatigh — p? — 1 — 0 has

) ) a solutionpy =~ 1.47, and that forp > pg, its left-
to describe our main result: hand side is an increasing function — since its derivative

i 2 _ 3 2
VI. MAIN RESULT is 3p% — 2p = (3p—' 2)-p>0.Thus,p® —p*—1 > 0for
all p > po — in particular, for allp > 2. Q.E.D.

Theorem. For everyp > 2, the sequential search method
S is optimal. Comment. From the purely mathematical viewpoint, the

above problem is very similar to the following planning
Proof. For sequential search, if the actual valuekgf; is Problem: the existing Al-based planners either find a plan
k, we check consistency of sets consisting of 1, 2, k,., Of given lengthk or conclude that such a plan is impossi-
andk + 1 constraints. As a result, the overall time is equaPle. Based on such a planner, what is the best way to find
to the shortest plan?

_ 2 k+1
Ts(k)=p+p~+...+p"". A partial solution to this problem is given in the paper

Here, [TRE 01]; in this paper, we also consider the cases when
p < 2 and when, instead of optimizing the worst-case over-
Tu(k)=p - (I+p t4p24.. . +p M < head, we optimize the average-case overhead. It is desir-
able to extend our soft constraint results to similar cases.
k+1
P i) =
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APPENDIX: WHAT IF CONSTRAINTS ARE NOT
PRIORITIZED?

A.1. Informal Introduction to the Problem We will reduce each instance of this problem to the cor-

responding soft constraints problem. Specifically, we take
What if our constraints are not prioritized? In this casey — n/e, and the following\ constraints:

since all the constraints are equally important, a natural ) _
idea is to satisfy as many constraints as possible. « nconstraintse; =0, ...z, = 0;

It turns out that the corresponding problem becomes com-"" constraintsry =1, ...,z = 1;

putationally difficult (NP-hard) even in when all the con-* &V — 2n constraintsy | s; - ; = s.
straints are of the simplest possible type — linear equations

(this result is announced in [CEB 05]). _Let us show_ that thi_s ;oft gonstraint problem has a solution
) ) ] if and only if the original instance of the subset problem
Let us formulate this problem in precise terms. has a solution.
A.2. Formulation of the Problem in Precise Terms Indeed,_if the subset problem hgs fasolution, theiVali2n
constraintsy_ s; - x; = s are satisfied, and for ea¢hone
Let a numbek € (0, 1) be given. of the two constraints; = 0 andz; = 1 is satisfied. Thus,

overall, we satisf( N — 2n) + n = N — n constraints.
SinceN = n/e, we haveN —n = N - (1 — ¢), so this
solution satisfiesv - (1 — ¢) constraints.

We are given a finite set a¥ linear constraints with. un-
knownszxy, ..., x,:

n Vice versa, let us assume that we have a solution that sat-
Zaij cxj=by, i=1,...,N isfies at leastV - (1 — ) = N — n linear constraints. For
=1 everyi, we can have either; = 0 or x; = 1 (or none), but



not both constraints. Thus, no matter what set of valtyes once we selected a variahlg, instead of selecting sin-
we select, at least constraints will be not satisfied. Thus, gle constraint, we tryall N constraints, and geV result-
the fact that> N — n linear constraints out oV are sat- . ‘

isfied means that all the remaining constraints are actualiyg intervals[gz(.j ), Ef:”]. If j-th constraint is satisfied, then

satisfied, i.e.:
©))

i

() e =) ; e =
« for everyi from 1 ton, eitherz; = 1 orz; = 1, and z; <@ <77 —in particularz; <7

« all N — 2n constraintsy_ s; - ; = s are satisfied. We know that at leasV - (1 — ) constraints are satisfied,

Thus, we have: valuesz; € {0,1} for which}_ s;-x; = s

: X - hencer; < fgj) for at leastV - (1 — ¢) different valuesj.
—i.e., we have a solution to the original subset problem.

This reduction proves that the soft constraint problem forlence, if we sort allV upper endpoints.” (1 < j < N)

non-prioritized constraints is indeed NP-hard — even in thi#ito an increasing sequeneg < uz < ... < uy, thenwe

case of linear constraints. can guarantee that; is smaller than (or equal to) at least
N - (1 — ¢) terms in this sequence —i.e., that< uy...

A.4. How Can We Actually Solve the Soft Constraint Prob- )

lem for Non-Prioritized Constraints: Idea Similarly, if we sort all the lower endpoint@ﬁj) 1<j<
N) into a decreasing sequente> Iy > ... > Iy, we

Traditional way to solving a constraint satisfaction problenzonclude that:; > Iy...

is to use constraint propagation; see, e.g., [JAU 01]. Thus, we can guarantee thate [ly ., uy..]. So, we can
H o8 et 1

Namely, we start with the intervalg:,, 71, ..., [z,,Z,] take the intervally.c,un.c] as the desired narrowing of
that are guaranteed to contain the actual values of the us, Z;]. As a result, we arrive at the following algorithm.
knownszy, ..., z,.

A.5. How Can We Actually Solve the Soft Constraint Prob-

On each iteration, we select a variableand a constraint lem for Non-Prioritized Constraints: Algorithm

fi(z1,...,2z,) = 0, and use the known intervals, , zy|
for all othe.r variablesy, .(k; # i) to narrow down the inter- e start with the intervaléz,, 7], . . ., [z, , Z,] that con-
val [z;, 7;] into the new interval tain the unknowns, . .., z,,.
On each iteration, we select a variable For this variable
HONS [:E(j) E(j)] def and for each ofV constraints, we compute the correspond-
0 I S A R} -
[ (4) =) .
(a5 € [, 7] & ing interval(z,”’, z,”’]. Then:
fi(@1, o i1, @4, i1, .. T0) = 0 « we sort allN upper endpoint§§j) (I <j < N)intoan

_ i i <uy <...<
for somey, € [z4, T4} increasing sequenag < us < ... < uy,

Once can easily see that, since jhth constraint is satis- , e sort allV lower endpoints:!?) (1 < j < N)into a
fied, this new interval is guaranteed to contain the actugecreasing sequente> I, > S Iy,and

unknown) value oft;. .
( ) ' o we take[ly .., un.c] as the new (narrower) interval for.

On each iteration, constraints and variables are selected in

such a way that eventually, we use all the constraints argimilar to the traditional constraint propagation case (of
narrow down all the variables. “hard” constraints), we select the variables, e.g., in a cyclic

order —x1, xs, ..., x,, then againy, o, ...,z,, etc. —so
If the process Sta”s, we bisect the interval for one the Va.r.that we narrow down the intervals Correspondin@“dhe
ables into two and try to decrease both resulting half-boxegariables.

If the process stalls, we bisect the interval for one the vari-
This process cannot be directly applied if we are not 100%bles into two and try to decrease both resulting half-boxes.
sure that allV constraints are valid — and instead, we only
know that at least (1 — ) - N constraints are satisfied
(but we do not know which of the origindV constraints
are satisfied).

CommentOut of the entire sorted sequencewe are only
interested in a single valuey... It is known (see, e.g.,
[COR 01]) that there exist special algorithms for producing
Instead, we propose the following modification of this stansuch a single value — algorithms which are much faster than
dard constraint propagation procedure. On each iteratio$Qrting.



