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Abstract - In traditional constraint satisfaction, constraints
are “hard” in the sense that we need to satisfy them all. In
many practical situations, however, constraints are “soft” in
the sense that if we are unable to satisfy some of them, the
corresponding solution is still practically useful. In such sit-
uations, it is desirable to satisfy as many high-priority con-
straints as possible. In this paper, we describe an optimal al-
gorithm for solving the corresponding soft constraint prob-
lem.
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I. WHY CONSTRAINTS?

In many areas of science and engineering, we are interested
in solving design and control problems. Usually, in these
problems, the users describe severalconstraintsthat the de-
sired design or control must satisfy, and our objective is to
find a design (correspondingly, a control) that satisfies all
these constraints.

In mathematical terms, a design or a control can be usu-
ally represented by the values of the relevant numerical
parametersx = (x1, . . . , xn). For example, an airplane
design can be described in terms of the geometric parame-
ters of the plane, the thickness of the plates that form the
airplane’s skin, the weight and power of the engine, etc.
A typical constraint describes a limitation on some char-
acteristics of this design: e.g., the airplane’s speed must
exceed a certain threshold, its fuel use must not exceed a
certain amount, and the overall cost must be within given
limits. Each of the corresponding characteristicsy (speed,
fuel use, etc.) can be uniquely determined by the design
y = f(x1, . . . , xn) for some computable functionf . Thus,
each constraint can be described as either an inequality of
the typef(x1, . . . , xn) ≤ y0 or f(x1, . . . , xn) ≥ y0 – or as
an equalityf(x1, . . . , xn) = y0 (for example, if we want
to design the fastest airplane within a fixed cost).

In many real-life situations, the constraints are consistent,
i.e., there exist designs that satisfy all these constraints. In
this case, it is desirable to find a design that satisfies a given
finite set of inequality/equality-type constraints. The corre-
sponding problem is called the problem ofconstraint satis-
faction.

Often, in such situations, there are many different designs
that satisfy the given constraints. In this case, it is desir-
able to select one of these designs. Users can often de-
scribe their preference in terms of anobjective function

g(x1, . . . , xn) whose value should be made as large as pos-
sible. In such situations, we are interested in maximiz-
ing the given functiong(x1, . . . , xn) under the given con-
straints. This problem is called aconstrained optimization
problem.

In general, constraint satisfaction and constraint optimiza-
tion problems are NP-hard; see, e.g., [KRE 97], [VAV 91].
In practice, however, there exist many efficient tools for
solving these problems, including numerous efficient tools
that provide validated solution to these problems.

II. WHAT ARE SOFT CONSTRAINTS?

In many practical situations, if we formulate all the users’
desired as constraints, we often end up with an inconsistent
set of constraints. For example, a user may want to design
a plane that is as fast and as fuel-efficient as the existing
Airbus or Boeing planes, but that will decrease the noise
level to 0.

The reason why constraints are inconsistent is that while
some of these constraints are absolute requirements (e.g.,
safety constraints for a plain), other constraints are simply
recommendations, desires, that a user wants to be imple-
mented if possible – but that can be dismissed if it is not
possible to satisfy them. Such “not required” constraints
are calledsoft constraints.

Soft constraints are an important research topic; see, e.g.,
the proceedings of the latest conference [PRO 04] and ref-
erences therein. Our own work in soft constraints is de-
scribed, e.g., in [BEN 03], [CEB 03].

III. PRIORITY APPROACH TO SOFT CONSTRAINTS:
A BRIEF DESCRIPTION

The main idea behind this approach is that if we cannot
satisfy all the constraints, we should at least satisfy as many
constraints as possible.

One of the natural approaches to soft constraints is there-
fore to ask the user toprioritize their constraints, from the
absolutely required to the less required. Once the user
sorted all his/her constraints from the most required to the
least required, into a sequenceC1 Â C2 Â . . . Â Cn, we
try to find the largest possible valuek = kopt for which all
the constraintsC1, C2, . . . , Ck are still consistent.



IV. PRIORITY APPROACH TO SOFT CONSTRAINTS:
A COMPUTATIONAL QUESTION

The existing constraint satisfaction tools enable us, given
constraints, either to find a design that satisfies these con-
straints, or to conclude that the given constraints are incon-
sistent.

There are many different ways how we can use one of these
tools to solve soft constraint problems. For example, we
can sequentially apply this tool to constraints sets{C1},
{C1, C2}, . . . , until we find the first valuel for which the
corresponding set is inconsistent. Then, the previous value
kopt = l− 1 is the desired largestk, and the corresponding
design is the desired one.

A (potential) problem with this approach is that when the
number of constraints is large, the constraint satisfaction
tools take a long time to run, so if we have to run the tool
for many different sets, we make the process even slower.

Alternatively, we can, e.g., use bisection to find the desired
valuekopt. At each stage of this iterative method, we have
an interval[k−, k+] that is guaranteed to contain this de-
sired value, i.e., for which the system of the firstk− con-
straints is consistent while the system of the firstk+ con-
straints is inconsistent.

Initially, k− = 0 (if we have no constraints, then, of course,
the problem is consistent) andk+ = n (we cannot satisfy
all constraints: this is the definition of the soft constraint
problem).

Then, sequentially, we test whether the midpointkm
def=

b(k− + k+)/2c of the interval is consistent or not, and,
depending on the result of this test, replace the original in-
terval with a half-size one:[k−, km] or [km, k+]. On each
iteration, the interval decreases in half, so afterlog2(n) it-
eration, we get the interval of width 1 – i.e., we get the
desired valuekopt. The advantage of this technique is that
we need fewer iterations to findk, but the disadvantage is
that some of these iterations may require analyzing much
more constraints –n as opposed tok ¿ n – and thus, may
take much longer.

Other methods of finding the optimalk are possible. The
question is: which of the methods is optimal?

Of course, different methods may be optimal for different
cases. What we would like to do is find the methods for
which some reasonably defined “worst-case” computation
time is optimal. Let us formulate this problem in precise
terms.

V. PRIORITY APPROACH TO SOFT CONSTRAINTS:
TOWARD FORMALIZING THE COMPUTATIONAL

QUESTION

We would like to describe the best strategy of findingkopt.
In order to do that, we need to explain what we mean by a
strategy.

All we can do is check, for several valueski, whether the
corresponding constraint sets are consistent. If we know
that constraints sets are consistent for the valuesk1, . . . , km

and inconsistent fork = k′1, . . . , k
′
p, then this knowledge

is equivalent to knowing that the constraints are consistent

for k− def= max(k1, . . . , km) and inconsistent fork+ def=
min(k′1, . . . , k

′
p).

In other words, at each stage of the computations, we know
thatk is within an interval[k−, k+] – i.e., that:

• the set of the firstk− inequalities is consistent, while

• the set of the firstk+ inequalities is inconsistent.

If k+ = k−+1, then we know thatk− is the desired largest
value for which constraints are consistent. Ifk+ > k−+1,
then, to continue looking forkopt, we must select a value
within the interval[k−, k+] that we will check next. This
value can, in general, depend on the number of a step.

So, in general, we can define themethodas follows:

Definition 1. A methodis a mapping that maps each pair
(I, s), where:

• I is an integer-valued interval[k−, k+], where 0 ≤
k− < k+ ≤ n andk+ > k− + 1, and

• s is a positive integer (= number of step)

into an integerknext from the open interval(k−, k+).

One can easily see that each method generates a strategy
that eventually leads to the desired valuekopt: once we
check whether the system of constraints is consistent or
not, we get a new interval[k−, knext] or [knext, k

+]. For
example:

• the sequential searchS corresponds to the method in
which we selectknext = k− + 1;

• bisectionB corresponds to the method in which we se-
lectknext = b(k− + k+)/2c.

How can we estimate the worst-case complexity of each
method? As we have mentioned, the problem of constraint
satisfaction is known to be NP-hard. This means, crudely
speaking, that the computation time grows exponentially
with the number of constraints. For most NP-hard prob-
lems such propositional satisfiability, the actual worst-case
complexity of the known algorithms grows as2n. For
Boolean-type constraints, it is therefore reasonable to as-
sume that the computational complexity of checking the
consistency of the system ofk constraints is proportional
to 2k.

Similarly, in a more general case of finite constraints in
which each variable hasp ≥ 2 different values, we need,
in the worst case,pk checks to check all possible values
of these constraint variables. It is therefore reasonable to
assume that in general, the computational complexity of



checking the consistency of the system ofk constraints
grows aspk for somep ≥ 2.

For every methodM and for every valuek of kopt, we can
now define the overall timeTM (k) that this method spends
on this case as the sum of the valuespk′ for all k′ for which
this method checks consistency.

For each value ofkopt, the ideal case is when someone’s
intuition informs us of the correct valuekopt. In this case,
we do not need to check for too many different valuesk,
all we need to do is check whether indeed the system of
first k constraints is consistent while the system of the first
k + 1 constraints is inconsistent. In this case, the overall
expenses are equal topk + pk+1.

In real life, no such intuition is available, so we have to test
more valuesk and thus, spend more time. The smaller the
“overhead” in comparison with the ideal case, the better.
We can therefore define theoverheadOp(M) of a method
M as

Op(M) def= max
k

TM (k)
pk + pk+1

.

Let p ≥ 2 be fixed. We say that a methodM is optimal
for this p if out of all methods, it has the smallest possible
overhead:Op(Mopt) = min

M
Op(M). Now, we are ready

to describe our main result:

VI. MAIN RESULT

Theorem. For everyp ≥ 2, the sequential search method
S is optimal.

Proof. For sequential search, if the actual value ofkopt is
k, we check consistency of sets consisting of 1, 2, . . . ,k,
andk + 1 constraints. As a result, the overall time is equal
to

TS(k) = p + p2 + . . . + pk+1.

Here,

TM (k) = pk+1 · (1 + p−1 + p−2 + . . . + p−k) <

pk+1 · (1 + p−1 + p−2 + . . .) =
pk+1

(1− p−1)
.

Sincepk + pk+1 = pk+1 · (1 + p−1), we conclude that

OS(p) <
1

(1− p−1) · (1 + p−1)
.

Let us now show that every other method has a larger over-
head. Indeed, the specific feature ofS is that inS, out of

all possible integers betweenk− andk+, we always select
knext = k−+1 as the next value to check. This means that
in every other methodM 6= S, there exists an interval in
which we select a valueknext > k−+2. In this case, if the
actual valuekopt is equal to the correspondingk−, then in
this method, we check bothk and≥ k+2. Later on, we still
need to check the valuek+1 – to make sure thatk is indeed
the largest consistent value. Thus, for thisk, the methodM
spends at least timeTM (k) ≥ pk+pk+1+pk+2. This lower
bound can be described asTM (k) ≥ pk+1 · (p + 1 + p−1),
hence

OM (k) =
TM (k)

pk+1 · (1 + p−1)
≥ p + 1 + p−1

1 + p−1
.

To complete our proof, we must show that

p + 1 + p−1

1 + p−1
≥ 1

(1− p−1) · (1 + p−1)
.

Multiplying both sides of this inequality by the denomina-
tor of the right-hand side, we get an equivalent inequality
p − p−2 ≥ 1, i.e., equivalently, thatp3 − p2 − 1 ≥ 0.
One can show that the equationp3 − p2 − 1 = 0 has
a solutionp0 ≈ 1.47, and that forp ≥ p0, its left-
hand side is an increasing function – since its derivative
is 3p2 − 2p = (3p− 2) · p > 0. Thus,p3 − p2 − 1 > 0 for
all p ≥ p0 – in particular, for allp ≥ 2. Q.E.D.

Comment. From the purely mathematical viewpoint, the
above problem is very similar to the following planning
problem: the existing AI-based planners either find a plan
of given lengthk or conclude that such a plan is impossi-
ble. Based on such a planner, what is the best way to find
the shortest plan?

A partial solution to this problem is given in the paper
[TRE 01]; in this paper, we also consider the cases when
p < 2 and when, instead of optimizing the worst-case over-
head, we optimize the average-case overhead. It is desir-
able to extend our soft constraint results to similar cases.
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APPENDIX: WHAT IF CONSTRAINTS ARE NOT
PRIORITIZED?

A.1. Informal Introduction to the Problem

What if our constraints are not prioritized? In this case,
since all the constraints are equally important, a natural
idea is to satisfy as many constraints as possible.

It turns out that the corresponding problem becomes com-
putationally difficult (NP-hard) even in when all the con-
straints are of the simplest possible type – linear equations
(this result is announced in [CEB 05]).

Let us formulate this problem in precise terms.

A.2. Formulation of the Problem in Precise Terms

Let a numberε ∈ (0, 1) be given.

We are given a finite set ofN linear constraints withn un-
knownsx1, . . . , xn:

n∑

j=1

aij · xj = bi, i = 1, . . . , N

(whereaij andbi are given).

Our objective is to check whether it is possible to select,
out of theseN constraints, a subset of≥ (1 − ε) ·N con-
straints which is consistent (i.e., for which there exist val-
uesx1, . . . , xn that satisfy all selected constraints).

We will prove that this problem is NP-hard.

A.3. Proof of NP-hardness

To prove NP-hardness of our problem, we will reduce
a known NP-hard problem to the problem whose NP-
hardness we try to prove: namely, to the above-described
soft constraint problem for non-prioritized constraints.

Specifically, we will reduce, to our problem, the following
subset sumproblem [KRE 97], [PAP 98] that is known to
be NP-hard:

• Given:

• n positive integerss1, . . . , sn and

• an integers > 0,

• check whether it is possible to find a subset of this set of
integers whose sum is equal to exactlys.

For eachi, we can takexi = 0 if we do not include the
i-th integer in the subset, andxi = 1 if we do. Then the
subset problem takes the following form: check whether
there exist valuesxi ∈ {0, 1} for which

n∑

i=1

si · xi = s.

We will reduce each instance of this problem to the cor-
responding soft constraints problem. Specifically, we take
N = n/ε, and the followingN constraints:

• n constraintsx1 = 0, . . . ,xn = 0;

• n constraintsx1 = 1, . . . ,xn = 1;

• N − 2n constraints
∑

si · xi = s.

Let us show that this soft constraint problem has a solution
if and only if the original instance of the subset problem
has a solution.

Indeed, if the subset problem has a solution, then allN−2n
constraints

∑
si · xi = s are satisfied, and for eachi, one

of the two constraintsxi = 0 andxi = 1 is satisfied. Thus,
overall, we satisfy(N − 2n) + n = N − n constraints.
SinceN = n/ε, we haveN − n = N · (1 − ε), so this
solution satisfiesN · (1− ε) constraints.

Vice versa, let us assume that we have a solution that sat-
isfies at leastN · (1 − ε) = N − n linear constraints. For
everyi, we can have eitherxi = 0 or xi = 1 (or none), but



not both constraints. Thus, no matter what set of valuesxi

we select, at leastn constraints will be not satisfied. Thus,
the fact that≥ N − n linear constraints out ofN are sat-
isfied means that all the remaining constraints are actually
satisfied, i.e.:

• for everyi from 1 ton, eitherxi = 1 or xi = 1, and

• all N − 2n constraints
∑

si · xi = s are satisfied.

Thus, we haven valuesxi ∈ {0, 1} for which
∑

si ·xi = s
– i.e., we have a solution to the original subset problem.

This reduction proves that the soft constraint problem for
non-prioritized constraints is indeed NP-hard – even in the
case of linear constraints.

A.4. How Can We Actually Solve the Soft Constraint Prob-
lem for Non-Prioritized Constraints: Idea

Traditional way to solving a constraint satisfaction problem
is to use constraint propagation; see, e.g., [JAU 01].

Namely, we start with the intervals[x1, x1], . . . , [xn, xn]
that are guaranteed to contain the actual values of the un-
knownsx1, . . . , xn.

On each iteration, we select a variablexi and a constraint
fj(x1, . . . , xn) = 0, and use the known intervals[xk, xk]
for all other variablesxk (k 6= i) to narrow down the inter-
val [xi, xi] into the new interval

x(j)
i = [x(j)

i , x
(j)
i ] def=

{xi : xi ∈ [xi, xi] &

fj(x1, . . . , xi−1, xi, xi+1, . . . , xn) = 0

for somexk ∈ [xk, xk]}.
Once can easily see that, since thej-th constraint is satis-
fied, this new interval is guaranteed to contain the actual
(unknown) value ofxi.

On each iteration, constraints and variables are selected in
such a way that eventually, we use all the constraints and
narrow down all the variables.

If the process stalls, we bisect the interval for one the vari-
ables into two and try to decrease both resulting half-boxes.

This process cannot be directly applied if we are not 100%
sure that allN constraints are valid – and instead, we only
know that at least≥ (1 − ε) · N constraints are satisfied
(but we do not know which of the originalN constraints
are satisfied).

Instead, we propose the following modification of this stan-
dard constraint propagation procedure. On each iteration,

once we selected a variablexi, instead of selecting asin-
gle constraint, we tryall N constraints, and getN result-

ing intervals[x(j)
i , x

(j)
i ]. If j-th constraint is satisfied, then

x
(j)
i ≤ xi ≤ x

(j)
i – in particular,xi ≤ x

(j)
i .

We know that at leastN · (1 − ε) constraints are satisfied,

hencexi ≤ x
(j)
i for at leastN · (1 − ε) different valuesj.

Hence, if we sort allN upper endpointsx(j)
i (1 ≤ j ≤ N )

into an increasing sequenceu1 ≤ u2 ≤ . . . ≤ uN , then we
can guarantee thatxi is smaller than (or equal to) at least
N · (1− ε) terms in this sequence – i.e., thatxi ≤ uN ·ε.

Similarly, if we sort all the lower endpointsx(j)
i (1 ≤ j ≤

N ) into a decreasing sequencel1 ≥ l2 ≥ . . . ≥ lN , we
conclude thatxi ≥ lN ·ε.

Thus, we can guarantee thatxi ∈ [lN ·ε, uN ·ε]. So, we can
take the interval[lN ·ε, uN ·ε] as the desired narrowing of
[xi, xi]. As a result, we arrive at the following algorithm.

A.5. How Can We Actually Solve the Soft Constraint Prob-
lem for Non-Prioritized Constraints: Algorithm

We start with the intervals[x1, x1], . . . , [xn, xn] that con-
tain the unknownsx1, . . . , xn.

On each iteration, we select a variablexi. For this variable
and for each ofN constraints, we compute the correspond-

ing interval[x(j)
i , x

(j)
i ]. Then:

• we sort allN upper endpointsx(j)
i (1 ≤ j ≤ N ) into an

increasing sequenceu1 ≤ u2 ≤ . . . ≤ uN ,

• we sort allN lower endpointsx(j)
i (1 ≤ j ≤ N ) into a

decreasing sequencel1 ≥ l2 ≥ . . . ≥ lN , and

• we take[lN ·ε, uN ·ε] as the new (narrower) interval forxi.

Similar to the traditional constraint propagation case (of
“hard” constraints), we select the variables, e.g., in a cyclic
order –x1, x2, . . . ,xn, then againx1, x2, . . . ,xn, etc. – so
that we narrow down the intervals corresponding toall the
variables.

If the process stalls, we bisect the interval for one the vari-
ables into two and try to decrease both resulting half-boxes.

Comment.Out of the entire sorted sequenceui, we are only
interested in a single valueuN ·ε. It is known (see, e.g.,
[COR 01]) that there exist special algorithms for producing
such a single value – algorithms which are much faster than
sorting.


