
+

Computational Thinking
in the Classroom

Dr. Martine Ceberio

Computer Science Department, UTEP

August 16, 2018 – GRIT, 2nd Annual Canutillo ISD Prof. Dev. Conference

+
Today’s Plan

n  Computational Thinking: What? Why? How?

n  Some of my experience and some of yours

n  Make it a discussion as much as needed

+

Computational Thinking
What?

Why?

How?

+
What is Computational Thinking?

n  Meet your two neighbors and [10 minutes]:

n  1/ Each of you shares to his/her group what they think
CT is

n  2/ Discuss differences if any

n  3/ Do you use it in your classroom?

+
Computational Thinking?

n  A way of:

n  Solving problems,

n  Designing systems, and

n  Understanding human behavior that draws on concepts
fundamental to computer science.

n  Not limited to computing or computer science

+
Computational Thinking [cont’d]

n  A problem solving process that includes a number of
characteristics, such as

n  logically ordering and analyzing data and

n  creating solutions using a series of ordered steps (or algorithms), and
dispositions,

n  such as the ability to confidently deal with complexity and open-ended
problems.

n  Essential to the development of computer applications, but it can
also be used to support problem solving

n  across all disciplines, including math, science, and the humanities.
Students who learn CT across the curriculum can begin to see a
relationship between subjects as well as between school and life
outside of the classroom.

[from Google for Education:
https://edu.google.com/resources/programs/exploring-computational-thinking/]

+
Computational Thinking [cont’d]

n  To flourish in today's world, CT has to be a
fundamental part of the way people think and
understand the world.

[from Carnegie Mellon University]

+
Computational thinking [cont’d]

n  Algorithmically solving problems

n  Solving problems applies to any discipline

n  Formulating problems such that computers can assist

n  In our digital age, knowing what can, cannot, should, etc.
be done will be extremely valuable

n  Analyzing and logically processing data

n  Generalizing and applying this process to other
problems

n  Abstraction, reusability, versatility

+
Computational Thinking… Why?

n  Being able to solve problems is relevant to many
disciplines

n  Law, medicine, engineering, etc.

n  Problem-based learning has proven to be very
successful

n  Exposing students to problem-solving and possibly
computer science will give them more options for
careers

+
Computational Thinking… How?

n  Obviously, this is central to Computer Science J

n  Mathematics: posing problems and using the right
tools to solve them

n  But not only… What else?

n  QUESTION: What do you do in your own classes? (or
would like to do)

n  Take 5 minutes in your groups

n  Then share with the whole group

+
Simple examples

n  Computer science:

n  Emphasize problem solving rather than putting sole focus on
coding

n  More and more focus on this

n  UTEP collaboration with Google

n  CS unplugged

n  Kodu or similar

n  Mathematics:

n  Posing problems rather than executing operations, repeating

n  Putting activities in context yield higher engagement and
content retention

n  Show that many ways exist to solve a given problem, so that
students have to think, pick, discuss

n  Use simple robots (e.g., for geometry)

+

+

+

+

+
Examples outside CS or Math

n  General activity (e.g., elementary school):

n  The unplugged robot

n  Makes students think sequentially

n  Depending on the students’ level, discussion about:

n  The elements of their solution

n  The risks of their solution

n  How to make it better

n  What they would need to actually “plug” it

n  Etc.

+
Examples outside CS or Math

n  Social Studies:

n  Pose (somehow) open-ended problems and have the
students work on a systematic approach to solving them à
e.g., the IDEAL framework

n  Ask students to design a video, create a video game,
design an app, etc. that addresses a problem presented in
social studies

n  You can use programs like Scratch

n  More advanced (more time): robots, lego mindstorm?

n  E.g., identifying a problem, designing and building a
solution

+
Examples outside CS or Math

n  Music:

n  Plug it in an animated video

n  Have students design music with computers: creation of
scales, etc.

n  Languages:

n  Same as with music but with text for practice

n  English as a Second Language: using a simple programming
language (like scratch or logo or even python turtle) can
help students manipulate English at different levels
(programming language, but also their project)

+
My Own Experience
+ Activities

+
My own experience

In CS:

n  I teach CS1: intro to CS & I designed and taught a new Problem
Solving course (along with Google)

n  In CS1: problem-solving and programming (because we solve
pbs on computers J)

n  In Problem-Solving: pure strategy, no coding, no
implementation

Outside CS:

n  Worked with a French teacher (using Scratch)

n  Worked with ESL teacher

+
Main Goals

n  Keeping the interest of the students up:

n  Motivation: purpose and relating topics to their everyday
lives

n  Acknowledgment: they know a lot already. I am just there
to help them make sense of their skills à asset-based
teaching

n  Providing valuable training to my students

n  Equipping them with skills of value across disciplines

+
How can we do this?

n  Purpose:

n  Use videos to show students what Computer Science is: code.org is a
great resource

n  Show what is done in other fields as well that relates to CT

n  Give students projects that are relevant (they could pick them)

n  Relevance: Share with them the accomplishments of people in
CS -- or other fields (make sure to include diversity: women,
other minorities, and culturally-relevant environment)

n  Acknowledgment of their prior skills: relate the topics to
“real-life” common tasks and activities + be casual (show trust)

•  E.g., algorithms: unplugged activities, robots

•  Recursion, repetitions: CS unplugged

•  Arrays and Linked-lists: rows of houses vs Treasure Hunt,
Monkeys in a barrel

•  Etc.

+
Examples of Activities

n  Activities to do together in the classroom:
n  1. Robot activity: it makes them stretch and work in teams

n  2. Recursion: counting together, checking a condition

n  3. Looking for an element in an array (logic & storage): looking for
an image on a computer screen for instance

n  4. Linked-lists manipulations: monkeys in a barrel, balloons,
linked-list of students (like a network of friends), etc.

n  5. Sorting people, papers, etc.

n  And you can come up with many more!

Computer Science rests on computational thinking (algorithms,
problem-solving). So you can teach it mostly without computers!

You can also use these in non-CS classes, even in PE

The trick is: “do it and tell later”

+
Examples of Activities

n  Let’s go over:

n  Recursion: counting together

n  Linked-lists manipulations: adding, removing elements in a
chain.

n  QUESTION: What else could you do? Share with your
team:

n  What you teach, what you have done in CT, how you did it,
what you’d like to do

n  What you wish you could do but do not know exactly how to
do

+

Getting Started!

+
How to get you started?

n  Visit the resources mentioned in this presentation

n  But I am also happy to:

n  Help you design activities to get you started on your
individual courses

n  Provide tutorials on tools and frameworks you can use

n  Provide workshops on how to design class activities
around computational thinking

n  Build an interest group of teachers

n  Let me know: contact me (mceberio@utep.edu)

+
Existing Opportunities

n  School Districts can partner with Code.org

n  Exploring CS: summer professional development

n  EngageCSEdu: a Google and NCWIT initiative à
resources for the classroom

n  The Hour of Code: First week of December

n  After-school programs

n  E.g., with Little Bits: http://littlebits.cc/education

n  NCWIT AspireIT

n  Code.org: curricula and ad-hoc activities available

+
Why is all of this important?

n  We need to inform young students about what CS is: so
they can make informed decisions

n  We need more people in CS: many jobs (and even more
going forward) will require knowledge of CS, or at the very
least strong computational thinking

n  We need diversity in CS (currently not diverse)

n  But mostly because:

n  Technology is all around

n  We need people with a general understanding of CT to
discuss and design the tools of the next generation

n  We need skilled people

n  We need SKILLED THINKERS

+
Thank you!

n Questions?

Martine Ceberio
Associate Professor of Computer Science

The University of Texas at El Paso
mceberio@utep.edu

Presentation available at: http://martineceberio.fr under Outreach

+
References

n  Google for Education:
https://edu.google.com/resources/programs/exploring-computational-thinking/

n  Problem Solving @ UTEP:
http://martineceberio.fr/blog/problem-solving-computer-scientists

n  Code.org (http://code.org)

n  Exploring CS: http://www.exploringcs.org/for-teachers-districts

n  EngageCSEdu: https://www.engage-csedu.org

n  The Hour of Code: https://hourofcode.com/us

n  Little Bits After-school program: http://littlebits.cc/education

n  NCWIT AiC: http://aspirations.org

n  NCWIT AspireIT: https://www.ncwit.org/project/aspireit-k-12-outreach-program

