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GENERAL OBJECTIVE

We are interested in dynamical phenomena: how to best make
use of our knowledge of them?

This is relevant to many areas:

from understanding how a vehicle can withstand an underbody
blast

to understanding how a disease spreads depending on the
number of affected people and the policies put in place for
instance,

to understanding how efficient a combustion system is, what
performance different mixes of fuel yield

etc.

In other words: wouldn’t it be nice to be able to predict what
could happen?
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WHAT CAN WE DO?

Given a dynamical system, we use it to make decisions.

What types of decisions?

Understanding how a dynamic phenomenon unfolds
under different input parameters: simulations → e.g.,
design decisions
Based on some knowledge of an unfolding phenomenon,
predicting its behavior → e.g., to allow preventive actions
Enforcing some behavior, when control of input or other
parameters is possible, and/or recomputing parameters on
the fly → e.g., to address an unexpected event and still
guarantee an acceptable outcome of the situation
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CHALLENGES

Size: even if the original problem is not always very large,
discretizing it potentially leads to large systems of
equations

Complexity: such problems are likely nonlinear, possibly
non-smooth, and yet need to be solved
Uncertainty in the dynamical systems we study / observe

Fuel combustion: e.g., what decision can be made about
the best nozzle geometry if the fuel mix is not known with
certainty? Under fuel mix uncertainty, what design could
limit pollutant emissions during training but maximize
performance on the field?
Trajectories: e.g., of missiles. What if we could provide an
envelope of a missile’s trajectory under uncertainty of
outside conditions (e.g., weather)?
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WHAT WE CAN DO

Size: → this can be addressed by Reduced-Order
Modeling (ROM) techniques

Complexity and uncertainty: we used interval
computations and constraint solving techniques
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PROBLEMS ARE TOO LARGE?

If we can not take this home: At least, we can take this:

This is what we call Model-Order Reduction (MOR).
And from MOR, we get a Reduced-Order Model (ROM).
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MODEL-ORDER REDUCTION (MOR)

Given the function
F : Rn → Rn

a nonlinear system of equations consists in finding x such that:

F(x) = 0

MOR is typically performed on the premise that the solution x belongs to an affine
subspace, W, of Rn whose dimension k is orders of magnitude smaller than n, i.e.

x = z +Φp

where Φ is a basis of a subspace of Rn associated to W
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ILLUSTRATION OF MOR

F : Rn → Rn

F(X) = 0

F(Φp + z) = 0

Assuming
z ≈ 0

we have to solve:
F(Φp) = 0

p = argmin
1

2
||F(Φp)||2

x1

x2

x3

 =

ϕ11 ϕ12

ϕ21 ϕ22

ϕ31 ϕ32

(
p1

p2

)
+

z1

z2

z3


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MOR BASICS

The goal of Model Order Reduction (MOR) is to:

Reduce complexity
Maintain (input-output) accuracy
Maintain relevant physical properties

A good Reduction methodology must be:

Accurate, efficient, numerically robust, and generate useful
models
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HOW TO GO ABOUT MOR?

The most common technique currently used to conduct Model-Order Reduction is
Proper Orthogonal Decomposition (POD) Chapman et al. 2016

It is based on Principal Component Analysis (PCA), which is a procedure for identifying
a smaller number of uncorrelated variables, called “principal components”, from a large
set of data. The goal of PCA is to describe the maximum amount of variance with the
fewest number of principal components.
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HOW DOES MOR WORK?
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UNCERTAINTY

Our approach.

We modeled uncertainty using intervals → interval computations

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY

Our approach.
We modeled uncertainty using intervals → interval computations

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY

Our approach.
We modeled uncertainty using intervals → interval computations

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY

Our approach.
We modeled uncertainty using intervals → interval computations

Why?

Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY

Our approach.
We modeled uncertainty using intervals → interval computations

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY

Our approach.
We modeled uncertainty using intervals → interval computations

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:

Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY

Our approach.
We modeled uncertainty using intervals → interval computations

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY

Our approach.
We modeled uncertainty using intervals → interval computations

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
Simulations with intervals: e.g., uncertainty in initial conditions, in input
parameters, etc.
Reduced-Order Modeling using interval computations: to handle both
the many snapshots and the possible uncertainty in other parameters /
constants → I-POD technique

12



UNCERTAINTY: INTERVAL TECHNIQUES
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USING INTERVAL IN SOLVING TECHNIQUES

Interval Branch-and-Bound and vari-
ations of it
It is the underlying principle of search
in interval constraint solving techniques
and it allows to guarantee complete-
ness of the search.

box 2

box 3

box 1 (initial box)

bisection

Fig.: L. Granvilliers, RealPaver User’s

Manual.

Algorithm
Input: System of constraints C = {c1, . . . , ck},
a search space D0.
Output: A set Sol of interval solutions
Set Sol to empty
If ∀i, 0 ∈ Fi(D0) then:

Store D0 in some storage S

While (S is not empty) do:
Take D out of S
If (∀i, 0 ∈ Fi(D)) then:

If (D is still too large) then:
Split D in D1 and D2

Store D1 and D2 in S

Else:
Store D in Sol

Return Sol
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PREDATOR-PREY EXAMPLE

The Lotka-Volterra problem models a predator-prey situation: e.g., foxes and rabbits{
y ′
1
= θ1y1(1 − y2), y1(0) = 1.2 θ1 = 3,

y ′
2
= θ2y2(y1 − 1), y2(0) = 1.1 θ2 = 1

No analytic solution is available.
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UNCERTAINTY: LOTKA-VOLTERRA

Let’s assume that we know the initial populations: y1(0) = 1.2 and y2(0) = 1.1 but we
do not know exactly θ1 and θ2: all we have are intervals of their potential values for
instance.

θ1 = [2.95, 3.05] and θ2 = [0.95, 1.05]

Let’s see what we obtain when we run the simulations with FOM (size 200) and with
ROM (size 3).
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ADVANTAGE OF INTERVAL ROM OVER INTERVAL FOM

We observed that simulations on ROM yield less uncertainty than simulations on
FOM

The runtime is 74,596ms for FOM and 4,616ms for ROM.
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PREDICTIONS

Our original problem. We want to solve: Fλ(x) = 0, where
x ∈ Rn with n too large.

Our new problem. We know what type of phenomenom is
happening, we observe it, but we do not know λ.
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PREDICTIONS

Important note. We have access to F.

Instead of solving: Fλ(x) = F(λ, x) = 0, we now solve: FObs(λ, x \Obs) = 0,
where our observations are uncertain.{

FObs(λ, x \Obs) = 0

∀xk ∈ Obs, xk = [Obsk, Obsk]

Our challenge.

Instead of solving the above problem in the original space, we need to
solve it in the reduced space. However, the observations do not
correspond to any variable of the reduced space.{

F(Φ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i ~xi

19



PREDICTIONS

Important note. We have access to F.
Instead of solving: Fλ(x) = F(λ, x) = 0, we now solve: FObs(λ, x \Obs) = 0,
where our observations are uncertain.

{
FObs(λ, x \Obs) = 0

∀xk ∈ Obs, xk = [Obsk, Obsk]

Our challenge.

Instead of solving the above problem in the original space, we need to
solve it in the reduced space. However, the observations do not
correspond to any variable of the reduced space.{

F(Φ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i ~xi

19



PREDICTIONS

Important note. We have access to F.
Instead of solving: Fλ(x) = F(λ, x) = 0, we now solve: FObs(λ, x \Obs) = 0,
where our observations are uncertain.{

FObs(λ, x \Obs) = 0

∀xk ∈ Obs, xk = [Obsk, Obsk]

Our challenge.

Instead of solving the above problem in the original space, we need to
solve it in the reduced space. However, the observations do not
correspond to any variable of the reduced space.{

F(Φ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i ~xi

19



PREDICTIONS

Important note. We have access to F.
Instead of solving: Fλ(x) = F(λ, x) = 0, we now solve: FObs(λ, x \Obs) = 0,
where our observations are uncertain.{

FObs(λ, x \Obs) = 0

∀xk ∈ Obs, xk = [Obsk, Obsk]

Our challenge.

Instead of solving the above problem in the original space, we need to
solve it in the reduced space.

However, the observations do not
correspond to any variable of the reduced space.{

F(Φ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i ~xi

19



PREDICTIONS

Important note. We have access to F.
Instead of solving: Fλ(x) = F(λ, x) = 0, we now solve: FObs(λ, x \Obs) = 0,
where our observations are uncertain.{

FObs(λ, x \Obs) = 0

∀xk ∈ Obs, xk = [Obsk, Obsk]

Our challenge.

Instead of solving the above problem in the original space, we need to
solve it in the reduced space. However, the observations do not
correspond to any variable of the reduced space.{

F(Φ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i ~xi

19



PREDICTIONS: SOME RESULTS
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PREDICTIONS: SOME RESULTS

What we know: one observation set and θ1 = θ2 = [0, 6].
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PREDICTIONS: SOME RESULTS

A look at the improvement from start to finish on the same
scale:

Left: one observation set and θ1 = θ2 = [0, 6].
Right: five observation sets, θ1 = [0.1875, 6] and

θ2 = [0, 4.6875]
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PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

Some conclusions:

We are able to make predictions
We observed that predictions on ROM yield less uncertainty than predictions on
FOM

But we still need:

to handle outliers: at best no solution, at worst erroneous ones
to handle time horizon uncertainty
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A SIMILAR PROBLEM: CONTROL / RECOMPUTATION

What if: we can modify the values of the dynamic system’s parameters.

Why/when would we do that?

to fix an unfolding phenomenon after an unexpected event
to ensure a given behavior
to prevent a given behavior

What does it look like?
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RECOMPUTING DYNAMIC SYSTEMS' PARAMETERS

Still using the Lokta-Volterra problem:{
y ′
1
= θ1y1(1 − y2) = θ1y1 − θ1y1y2,

y ′
2
= θ2y2(y2 − 1) = θ2y2y1 − θ2y2,

We choose: y1(0) = 1.2, θ1 = 2.95, y2(0) = 1.1, and θ2 = 1.0.

But then we decide to alter the value of θ1 to 1.5 at the 50th time step, and we
recompute θ2 to enforce that y1 and y2 will converge to the same end point as in the
initial problem at the 100th time step.

We obtained no solution despite θ2 = [0, 5].
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RECOMPUTING DYNAMIC SYSTEMS' PARAMETERS

Some conclusions:

We are able to (re-)compute parameters
But we still have to take recomputation time into account when doing it “on the fly”
Future steps? identify parameters that, even under uncertainty, guarantee a
certain behavior. E.g., combustion problem with uncertain fuel mix
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NEXT STEPS

Approaches: model time uncertainty

Time horizon
Observation times
Recomputation time
Control prediction time

Applications:

Fuel mix uncertainty
Combustion nozzle geometry
Problems with discontinuities
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THANK YOU FOR YOUR ATTENTION

Any questions?

Martine Ceberio, mceberio@utep.edu
Leobardo Valera, lvalera@gmail.com
Angel Garcia Contreras, afgarciacontreras@miners.utep.edu

37


