Handling Uncertainty in Dynamical Systems and Posing New Questions

AHPCRC RMB Meeting – March 7, 2018

Martine Ceberio, Miguel Argaez, Horacio Florez, Leobardo Valera, Jesus Padilla, Phillip Hassoun

Computer Science Department
The University of Texas at El Paso
mceberio@utep.edu
OUR PROJECT

- Conducted at the University of Texas at El Paso
- From April 2013 to December 2017
GENERAL OBJECTIVE

Being able to make sense of dynamical phenomena
GENERAL OBJECTIVE

Being able to make sense of dynamical phenomena

This is relevant to many areas:

- from understanding how a vehicle can withstand an underbody blast
- to understanding how a disease spreads depending on the number of affected people and the policies put in place for instance,
- to understanding how efficient a combustion system is, what performance different mixes of fuel yield
- etc.
GENERAL OBJECTIVE

Being able to make sense of dynamical phenomena

This is relevant to many areas:

- from understanding how a vehicle can withstand an underbody blast
- to understanding how a disease spreads depending on the number of affected people and the policies put in place for instance,
- to understanding how efficient a combustion system is, what performance different mixes of fuel yield
- etc.

In other words: wouldn’t it be nice to be able to predict what could happen?
Given a dynamical system, use it to make decisions.
Given a dynamical system, use it to make decisions.

- What types of decisions?
Given a dynamical system, use it to make decisions.

- What types of decisions?
 - **Understanding** how a dynamic phenomenon unfolds under different input parameters: simulations \rightarrow e.g., design decisions

Understanding how a dynamic phenomenon unfolds under different input parameters: simulations \rightarrow e.g., design decisions
Given a dynamical system, use it to make decisions.

- What types of decisions?
 - Understanding how a dynamic phenomenon unfolds under different input parameters: simulations → e.g., design decisions

- What are the challenges? Why is it hard?
Given a dynamical system, use it to make **decisions**.

- **What types of decisions?**
 - **Understanding** how a dynamic phenomenon unfolds under different input parameters: simulations → e.g., design decisions

- **What are the challenges? Why is it hard?**
 - **Size:** even if the original problem is not always very large, discretizing it potentially leads to large systems of equations
GENERAL PROBLEM TO BE ADDRESSED

Given a dynamical system, use it to make decisions.

- What types of decisions?
 - Understanding how a dynamic phenomenon unfolds under different input parameters: simulations → e.g., design decisions

- What are the challenges? Why is it hard?
 - **Size:** even if the original problem is not always very large, discretizing it potentially leads to large systems of equations
 - **Complexity:** such problems are likely nonlinear, possibly non-smooth, and yet need to be solved
MORE ON THESE CHALLENGES

- **Size:** this can be addressed by Reduced-Order Modeling (ROM) techniques
MORE ON THESE CHALLENGES

- **Size**: this can be addressed by Reduced-Order Modeling (ROM) techniques
 - In this project, we looked at ROM using wavelets (3 conf. + 1 journal articles)
MORE ON THESE CHALLENGES

- **Size:** this can be addressed by Reduced-Order Modeling (ROM) techniques
 - In this project, we looked at ROM using wavelets (3 conf. + 1 journal articles)

- **Complexity:** such problems are likely nonlinear, possibly non-smooth, and yet need to be solved
MORE ON THESE CHALLENGES

- **Size:** this can be addressed by Reduced-Order Modeling (ROM) techniques
 - In this project, we looked at ROM using wavelets (3 conf. + 1 journal articles)

- **Complexity:** such problems are likely nonlinear, possibly non-smooth, and yet need to be solved
 - In this project, we looked at optimization algorithms: regularization in particular (4 conf. + 2 journal articles)
Handling uncertainty in the dynamical systems we study / observe
Handling uncertainty in the dynamical systems we study / observe

Fuel combustion: e.g., what decision can be made about the best nozzle geometry if the fuel mix is not known with certainty? Under fuel mix uncertainty, what design could limit pollutant emissions during training but maximize performance on the field?
Handing uncertainty in the dynamical systems we study / observe

- Fuel combustion: e.g., what decision can be made about the best nozzle geometry if the fuel mix is not known with certainty? Under fuel mix uncertainty, what design could limit pollutant emissions during training but maximize performance on the field?
- Trajectories: e.g., of missiles. What if we could provide an envelope of a missile’s trajectory under uncertainty of outside conditions (e.g., weather)?
Predicting the future behavior of an unfolding event under observation
ADDITIONAL QUESTIONS / OBJECTIVES

- **Predicting** the future behavior of an unfolding event under observation
 - We may *not always have control of unfolding events*. But if we know the type of event we observe, we may be able to deduce its parameters and other conditions so as to predict its future behavior ahead of time.
ADDITIONAL QUESTIONS / OBJECTIVES

- **Predicting** the future behavior of an unfolding event under observation
 - We may **not always have control of unfolding events**. But if we know the type of event we observe, we may be able to deduce its parameters and other conditions so as to predict its future behavior ahead of time.

- **Recomputing** the behavior of an unfolding event after unexpected changes
ADDITIONAL QUESTIONS / OBJECTIVES

- **Predicting** the future behavior of an unfolding event under observation
 - We may **not always have control of unfolding events**. But if we know the type of event we observe, we may be able to deduce its parameters and other conditions so as to predict its future behavior ahead of time.

- **Recomputing** the behavior of an unfolding event after unexpected changes
 - How to best **inflect the unfolding of an event** known to lead to an undesired situation?
 - Can we recompute parameters to ensure or avoid a given situation?

And all of these with **guarantees**.
HOW WE MET THESE NEW OBJECTIVES

- Handling uncertainty
- Making predictions on unfolding events
- Inflecting unfolding events
- While guaranteeing results
Our approach.

Uncertainty

We modeled uncertainty using intervals! interval computations. We had to reconsider optimization algorithms to handle intervals! algorithms based on numerical constraint solving techniques (see poster session this afternoon). We designed a new Finite Element Method technique using intervals for nonlinear functions. Why? Because interval algorithms are reliable: no solution is lost. What this allowed us to do: Simulations with intervals: e.g., uncertainty in initial conditions, in input parameters, etc. Reduced-Order Modeling using interval computations: to handle both the many snapshots and the possible uncertainty in other parameters / constants! new I-POD technique. 4 conference articles (2 with ARL collaborator), 1 journal article.
Our approach.

- We modeled uncertainty using intervals → interval computations
Our approach.

- We modeled uncertainty using intervals → interval computations
- We had to reconsider optimization algorithms to handle intervals → algorithms based on numerical constraint solving techniques (see poster session this afternoon)
Our approach.

- We modeled uncertainty using intervals \rightarrow interval computations
- We had to reconsider optimization algorithms to handle intervals \rightarrow algorithms based on numerical constraint solving techniques (see poster session this afternoon)
- We designed a new Finite Element Method technique using intervals for nonlinear functions.
Our approach.

- We modeled uncertainty using **intervals** → interval computations
- We had to **reconsider optimization algorithms** to handle intervals → algorithms based on numerical constraint solving techniques (*see poster session this afternoon*)
- We designed a new **Finite Element Method technique using intervals** for nonlinear functions.

Why?
Our approach.

- We modeled uncertainty using **intervals** → interval computations
- We had to **reconsider optimization algorithms** to handle intervals → algorithms based on numerical constraint solving techniques (*see poster session this afternoon)*
- We designed a new **Finite Element Method technique using intervals** for nonlinear functions.

Why? Because interval algorithms are **reliable**: no solution is lost.
Our approach.

- We modeled uncertainty using intervals → interval computations
- We had to reconsider optimization algorithms to handle intervals → algorithms based on numerical constraint solving techniques (see poster session this afternoon)
- We designed a new Finite Element Method technique using intervals for nonlinear functions.

Why? Because interval algorithms are reliable: no solution is lost.

What this allowed us to do:
UNCERTAINTY

Our approach.
- We modeled uncertainty using **intervals** → interval computations
- We had to **reconsider optimization algorithms** to handle intervals → algorithms based on numerical constraint solving techniques (*see poster session this afternoon*)
- We designed a new **Finite Element Method technique using intervals** for nonlinear functions.

Why? Because interval algorithms are **reliable**: no solution is lost.

What this allowed us to do:
- **Simulations** with intervals: e.g., uncertainty in initial conditions, in input parameters, etc.
- **Reduced-Order Modeling using interval computations**: to handle both the many snapshots and the possible uncertainty in other parameters / constants → **new I-POD technique**
Our approach.

- We modeled uncertainty using **intervals** → interval computations
- We had to **reconsider optimization algorithms** to handle intervals → algorithms based on numerical constraint solving techniques (**see poster session this afternoon**)
- We designed a new **Finite Element Method technique using intervals** for nonlinear functions.

Why? Because interval algorithms are **reliable**: no solution is lost.

What this allowed us to do:

- **Simulations** with intervals: e.g., uncertainty in initial conditions, in input parameters, etc.
- **Reduced-Order Modeling using interval computations**: to handle both the many snapshots and the possible uncertainty in other parameters / constants → **new I-POD technique**

4 conference articles (2 with ARL collaborator), 1 journal article
UNCERTAINTY: INTERVAL TECHNIQUES
Important note. Instead of solving: $F_\lambda(x) = 0$, we now solve: $F_{\text{Obs}}(\lambda, x \setminus \text{Obs}) = 0$, where our observations are uncertain.

\[
\begin{cases}
F_{\text{Obs}}(\lambda, x \setminus \text{Obs}) = 0 \\
\forall x_k \in \text{Obs}, x_k = [\text{Obs}_k, \text{Obs}_k]
\end{cases}
\]

Our challenge.
Important note. Instead of solving: \(F_\lambda(x) = 0 \), we now solve:
\(F_{\text{Obs}}(\lambda, x \setminus \text{Obs}) = 0 \), where our observations are uncertain.

\[
\begin{aligned}
F_{\text{Obs}}(\lambda, x \setminus \text{Obs}) &= 0 \\
\forall x_k \in \text{Obs}, x_k &= [\text{Obs}_k, \overline{\text{Obs}_k}]
\end{aligned}
\]

Our challenge.

Instead of solving the above problem in the original space, we solved it in the reduced space where the observations do not correspond to a variable of the reduced space.

\[
\begin{aligned}
F(\Phi \hat{x}, \lambda) &= 0 \\
\forall x_k \in \text{Obs}, x_k &= \sum_{i=1}^{p} \Phi_{k,i} \hat{x}_i
\end{aligned}
\]
• **Important note.** Instead of solving: $F_{\lambda}(x) = 0$, we now solve: $F_{\text{Obs}}(\lambda, x \setminus \text{Obs}) = 0$, where our observations are uncertain.

\[
\begin{cases}
F_{\text{Obs}}(\lambda, x \setminus \text{Obs}) = 0 \\
\forall x_k \in \text{Obs}, \ x_k = [\text{Obs}_k, \overline{\text{Obs}_k}]
\end{cases}
\]

• **Our challenge.**

 - Instead of solving the above problem in the original space, we solved it in the reduced space where the observations do not correspond to a variable of the reduced space.

\[
\begin{cases}
F(\Phi \tilde{x}, \lambda) = 0 \\
\forall x_k \in \text{Obs}, \ x_k = \sum_{i=1}^{p} \Phi_{k,i} \tilde{x}_i
\end{cases}
\]

1 conference article, 1 submitted journal article
PREDICTIONS: SOME RESULTS
PREDICTIONS: SOME RESULTS
PREDICTIONS: SOME RESULTS
PREDICTIONS: SOME RESULTS
Our approach.
Our approach.

- The problem is similar in essence to predictions.
Our approach.

- The problem is similar in essence to predictions.
- Input parameters are to be recomputed
- Observations are partially replaced: the starting point of the computation is the point where a disruption might have occurred (observed) and we have an end point (or multiple constraints) which describes the goal of the recomputation.
Our approach.

- The problem is similar in essence to predictions.
- Input parameters are to be recomputed
- Observations are partially replaced: the starting point of the computation is the point where a disruption might have occurred (observed) and we have an end point (or multiple constraints) which describes the goal of the recomputation.

Challenge:
Our approach.

- The problem is similar in essence to predictions.
- Input parameters are to be recomputed
- Observations are partially replaced: the starting point of the computation is the point where a disruption might have occurred (observed) and we have an end point (or multiple constraints) which describes the goal of the recomputation.

Challenge: ensuring that the computed parameters satisfy the stated constraints / goals
Our approach.

- The problem is similar in essence to predictions.
- Input parameters are to be recomputed
- Observations are partially replaced: the starting point of the computation is the point where a disruption might have occurred (observed) and we have an end point (or multiple constraints) which describes the goal of the recomputation.

Challenge: ensuring that the computed parameters satisfy the stated constraints / goals
Some of this work stemmed from collaborations:

- **Uncertainty:**
 - Craig Barker – ARL APG and his team, about the modeling of people in vehicle of underbody blast simulations.
 → integration of interval computations and the design of the I-POD technique.
Some of this work stemmed from collaborations:

Uncertainty:

- **Craig Barker – ARL APG** and his team, about the modeling of people in vehicle of underbody blast simulations.
 - integration of interval computations and the design of the I-POD technique.
- **Luis Bravo – ARL APG**, about the model-order reduction of a combustion problem and uncertainty quantification related to fuel mix uncertainty.
 - design of the interval FEM technique.
Some of this work stemmed from collaborations:

- **Uncertainty:**
 - **Craig Barker – ARL APG** and his team, about the modeling of people in vehicle of underbody blast simulations.
 - integration of interval computations and the design of the I-POD technique.
 - **Luis Bravo – ARL APG**, about the model-order reduction of a combustion problem and uncertainty quantification related to fuel mix uncertainty.
 - design of the interval FEM technique.

- **Predictions:**
 - In the aim to design smart sensors, which predict rather than simply sense.
 - problem modeling and preliminary results in making predictions.
Some of this work stemmed from collaborations:

Uncertainty:
- **Craig Barker – ARL APG** and his team, about the modeling of people in vehicle of underbody blast simulations.
 - integration of interval computations and the design of the I-POD technique.
- **Luis Bravo – ARL APG**, about the model-order reduction of a combustion problem and uncertainty quantification related to fuel mix uncertainty.
 - design of the interval FEM technique.

Predictions:
- In the aim to design smart sensors, which predict rather than simply sense.
 - problem modeling and preliminary results in making predictions.

Inflections:
- From an APG Open House visit: how to recompute the load of a helicopter after a hit, to ensure landing in a safe zone.
 - preliminary algorithms to show feasibility of recomputations.
COLLABORATIONS (CONT'D)

- **Simon Su – ARL APG** (2017): our point of contact for our capstone project, a mobile app for handling dynamic systems with uncertainty

![Mobile Tool Prototype](image1)

![Function](image2)

![Function](image3)

![Initial Box](image4)

![Plot](image5)
SOFTWARE TRANSFER

- **I-POD package** transferred to Craig Barker’s team in 2015.
- **UQ App** available for download.
VISITS TO ARL

- **Open Campus:** Horacio Florez, post-doc of our team, from 02/2015 to 12/2017, at ARL ALC, Adelphi.

- **Short visits:** to ARL ALC and APG for open houses and other presentations (e.g., poster presentation at June 2017 TAB meeting).
2 edited books
5 journal articles
15 peer-reviewed conference articles
18 conference/workshop presentations
5 poster presentations

including: 1 journal article, 2 conference articles, and 1 poster in collaboration with Luis Bravo.
2 post-doctoral researchers

4 students from my lab (even if not sponsored through this project): 2 Ph.D., 2 UG

2016-2017: we identified 19 UTEP students to participate in the AHPCRC Summer Institute: 12 selected
NEXT STEPS

- Model **time uncertainty**
- Beyond uncertainty, handle **erroneous or missing information**
THANK YOU FOR YOUR ATTENTION

Any Questions?

Below are illustrations of different areas of our work: