CQI Report
Fundamentals Committee
Fall 2008

Prepared by:
Olac Fuentes (committee chair)
Marine Ceberio
Vladik Kreinovich
Mary Kay Roy
Eric Freudenthal

CS 2401 Review — Fall 2008

Prepared by Olac Fuentes

Course Description:

This is the second course for students majoring in Computer Science. Students will learn about fundamental
computing algorithms, including searching and sorting; elementary abstract data types including linked lists,
stacks, queues and trees; and elementary algorithm analysis.

Knowledge and abilities required before the students enter the course:

Students are assumed to be comfortable programming in Java. Students should be able to code basic arithmetic
expressions, define simple classes, use strings, code loops and conditional statements, write methods, create
objects from classes, invoke methods on an object, perform basic text file input and output, and use arrays.

Learning Outcomes

Level 3 Outcomes: Synthesis and Evaluation
Identify, implement and use:

Binary trees and binary search trees.
Simple hashes

a. Multi-dimensional arrays.

b. Lists implemented as arrays or linked lists.
c. Stacks.

d. Queues.

e.

f.

Level 2 Outcomes: Application and Analysis

Use Big-O notation to express the best-, average- and worst-case behaviors of an algorithm

Explain the structure and use of activation records

Determine the best, average and worst-case behaviors of an algorithm

Assess time and space trade-offs in algorithms.

Explain, code, and use quadratic and O(n log n) sorting algorithms

Implement recursive algorithms over natural numbers, lists, and trees

Define and use classes, subclasses and inheritance.

Implement a simple graphical user interface

Perform string manipulation and simple parsing

Implement and use multidimensional arrays

Describe the importance of encapsulation and information hiding

Implement applications and simulations of the data structures identified above.
. Implement simple sequential and binary search algorithms

Implement quadratic sorting algorithms

Describe memory allocation of integers, real numbers, arrays and objects

oS 3I—ARTTS@rPo0Te

Level 1 Outcomes: Knowledge and Comprehension

Explain basic and introductory-level notions of a virtual machine

Explain the concept of polymorphism

Use class browsers and related tools

Identify class hierarchies

Recognize the standard terms associated with particular data structures e.g. head/tail, push/pop/peek

®Poo0ow

Instruments

Assessment was done using 3 partial exams, a final exam, and 10 laboratory assignments. The table shows the
mapping from outcomes to assessment instruments and the average grade, normalized to the 0-1 range, obtained
by students in that instrument.

Assessment Mapping Table

Outcome Level Test 1 Test 2 Test 3 Other Final Result
Exam
Explain basic and 1 Explained,
introductory-level notions assigned as
of a virtual machine homework, not
tested
Explain the concept of 1 Q10:6 Lab 1 Met
polymorphism A:0.99 A:0.75
Use class browsers and 1 Lab Assignments Met
related- tools 2-10
TA
Assesment:80%
Identify class hierarchies 1 Lab Assignments Met
2-10
TA
Assesment:80%
Recognize the basic terms | 1 Q8:8 Q7:10 Met
associated with particular A:0.71 A:0.80
data structures e.g. Q9:8 Q8:10
head/tail, push/pop/peek A: 0.47 A:0.51
Q9:10
A: 0.55
Use Big-O notation to 2 Q112 QL:12 Met
express the best-, average- A:0.72 A:0.89
and worst-case behaviors Q2:9 Q13:10 A:
of an algorithm A:0.69 0.71
Q14:10 A:
0.66
Explain the structure and 2 Explained, not
use of activation records tested
Determine the best, 2 QL:12 Q14:10 Met
average and worst-case A:0.72 A: 0.66
behaviors of an algorithm Q2:9
A:0.69
Assess time and space 2 Lab7 Met
trade-offs in algorithms. A:0.75
Lab 9
A:0.90
Explain, code, and use 2 Q3:8 Lab7 Met
quadratic and O(n log n) A:0.99 | A0.75
sorting algorithms Q4:8 Lab 9
A:1.00 | A:0.90
Implement recursive 2 Q5:5 Lab 2 Q3:8 Met
algorithms over natural A: 0.96 A:0.81 A:0.76
numbers, lists, and trees Q6: 8 Lab 3 Q4:9
A:0.28 A:0.85 A:0.84
Q7:10 Lab 4
A:0.28 A:0.88
Lab 5
A:0.80
Lab 6
A:0.90
Define and use classes, 2 Lab Assignments Met

subclasses and 2-10
inheritance. TA
Assesment:75%
Implement a simple No covered
graphical user interface
Perform string Q8:12 Lab 5 Q5:5 Met
manipulation and simple A:0.32 A:0.80 A:0.95
parsing Lab 7
A:0.75
Describe the importance Lab Assignments Met
of encapsulation and 1-10
information hiding TA
Assesment:80%
Implement applications Labs 1 to 10 Met
and simulations of the data A:0.83
structures identified
above.
Implement simple Covered, not
sequential and binary tested
search algorithms
Implement quadratic Lab 6 Met
sorting algorithms A:0.90
Lab9
A:0.90
Describe memory Q12:8 Met
allocation of integers, real A:0.73
numbers, arrays and
objects
Multi-dimensional arrays. Q2:10 Lab 1 QL:12 Met
A:0.80 A:0.75 A:0.89
Q3:10 Lab 3 Q2:10
A:0.82 A:0.85 A: 0.64
Q4: 10
A:0.76
Q9:10
A:0.58
Q11:8
A:0.37
Lists implemented as Q1:10 Lab 6 Q6:10 Met
arrays or linked lists. A:0.79 A:0.90 A:0.70
Q2:10 Lab 7 Q7:10
A:0.76 A:0.75 A:0.80
Q3:12
A:0.55
Q4:12
A:0.54
Q5:12
A:0.56
Q6:10
A:0.45
Q7:12
A:0.38
Stacks Q8:8 Lab 8 Q8:10 Met
A:0.75 A:0.70 A:0.51
Q10:20
A:0.36
Queues Q9:8 Lab 8 Q9:10 Met
A: 0.47 A:0.70 A: 0.55
Q10:12

A:0.31

Binary trees and binary 3 Q5:8 Lab 10 Q10:4 Met
search trees. A:0.92 | A:0.95 A:0.79

Q6:9 Q11:10
A: 0.87 A: 0.68
Q7:9 Q12:10
A: 0.83 A: 0.57
Q8:12

A:0.73
Q9: 12

A:0.58
Q10:12
A:0.20
Q11:12
A: 0.49

Simple hashes 3 Q:128 Met

A: 0.96

Performance analysis by instructor

Table 1 presents the assessment results for each course outcome. “Met” in the last column indicates that for a
guestion the mean is 70% or better. Overall, the course was successful in attaining the main educational
outcomes. In particular, most level 3 outcomes were tested multiple times to ensure compliance and were met.

We make following observations and recommendations:

1.

Outcome level 1, Explain basic and introductory-level notions of a virtual machine, was explained in class
and was the subject of a homework assignment, but was not tested. This was deemed sufficient since it’s a
level one outcome and the topic will be explained in detail in advanced courses.

Outcome level 2, Explain the structure and use of activation records was not tested. The material was
explained in class when recursion was introduced, but not tested. We suggest this outcome be moved to CS3
Data Structures and presented when recursion is covered in more depth.

Outcome level 2, Implement simple sequential and binary search algorithms was not tested. The material was
explained and used as an example when big-O notation was introduced, but it was not tested, as the code is
provided in the textbook. The instructor believed that there was little to be gained by having the students just
re-type that code. We recommend the outcome be modified to “Describe and analyze sequential and binary
search algorithms”.

Outcome level 2, Implement a simple graphical user interface was described in the lab by the T.A., but not
tested. We recommend user graphical interfaces be required as parts of at least two of the labs in the course.

Comments by Committee:

Strengths of course:

The majority of learning outcomes was met.

Labs: varied topics at the right level of depth

Exams: cover outcomes at appropriate level of depth. Interesting types of questions: Given a complexity
in big-Oh and parameters, implement an algorithm of the given complexity.

Issues:

Some instructors prefer labs with specific topics, while labs in this course are for the most part lists of
shorter tasks to be implemented. The committee should discuss which approach works best for training
the students (the answer to this question should also involve data about their motivation level, which can
affect the retention of students).

Opportunities for improvement:

Some outcomes not met, as already mentioned in analysis by instructor.

Recommendations for change to course delivery:

Lower failing grades are desirable.

Recommendations for changes to program:

Move Outcome level 2, Explain the structure and use of activation records to CS3, as suggested by
instructor.

Replace Outcome level 2 Implement simple sequential and binary search algorithms by Describe and
analyze sequential and binary search algorithms, as suggested by instructor, since the code is presented
in most textbooks and is also readily available online.

Assessment Instruments

CS2401

Fall 2008
Exam 1

1. (8 points) The following method was written with poor programming style and documentation Rewrite it to
fix these problems.

public static int k(int kgb){
/[This method is recursive
if (n>0) // comparingnand 0
return O; //
return n*k(n-1);

ky

2. (10 points) Write a method that receives a 1D array of integers A and an integer n and counts and returns the
number of times n appears in A.

w

(10 points) Consider the following method:
public static int [] cs(int [] A){
int [] C = new int[A.length];
C[0] = A[C;
for(int i=1; i<A.length;i++)
C[i] = C[i-1]+ Al[i];
return C;

}
Trace the execution of cs(A), where A = {2,4,5,7,8}.

4. (10 points) Write a method that receives a 2D array of integers A and an integer n and returns the row where
n first appears in A, or -1 if n does not appear in n. For example, if A= {{1,2}, {4,5}, {5,8}}, and n = 5,
your method should return 1, and if A= {{1,2}, {4,5}, {5,8}}, and n =9, your method should return -1.

5. (5 points) When is a recursive solution to a problem preferable to an iterative solution?
6. (8 points) Consider the following method:

public static void s(String S, int n) {
if (n>0){
s(S+"0",n-1);
s(S+"1",n-1);
¥
else
System.out.printIn(S);

10.

11.

12.

Trace the execution of s("",3)
(10 points) Write a recursive method that computes the sum 1/n + 1/(n-1) + 1/(n-2) + ... + %2 + 1/1.

(12 points) Write a method that receives a String S and returns the lower case vowel that appears in S with
the highest frequency. For example, if S = "El Paso, Texas", your program should return 'a’. You may break
ties arbitrarily.

(10 points) Write a recursive method that prints the contents of a 1D array in reverse.

(6 points) Explain the following concepts:

a. Inheritance
b. Polymorphism
C. Method overriding

(8 points) What is the output of the following code fragment?

int [1[] x = {{1,2,3},{4,5,6}.{7.8,9}};
for (int i=0;i<x.length;i++)
x[i] = x[0];
printArray(x);
x[2][0]= -1;
printArray(x);

(8 points) What is the output of the following code fragment?

void p(int [] k){
int[] m=Kk;
m[1] = -10;

}

int [1x={1,2,3};

p(X);
printArray(x);

CS2401

Fall 2008
Exam 2

1. (10 points) What will be the output of the following code fragment:

Node x = null;
for (i=0;i<50;i=i+10)
Node x = new Node(i,x);
printList(x);
Node y= x.link;
X = y.link;
printList(x);
printList(y);
Node z = new Node(100,y);
printList(z);
y =null;
printList(z);
while (z.link!=null)
z=z.link;
printList(z);

2. (10 points) Consider the method c written below. Show a box trace of the execution of c(x,0), where x points
to a reference-based list that contains a sequence of nodes with values [2,-4,8,10,-15,-8]

void c(cNode x, int K){

if (x!'=null){
if (x.info<k)
x.info =k;
c(x.link,k);
}

}

3. (12 points) Write the method that takes as parameters h, a reference to the head of a linked list of integers, and
n, an integer, and prints the first n elements of the list, or the whole list if it has less than n elements. Use only
node operations to access the list.

4. (12 points) Write a method that receives a reference to the head of a list of characters and returns a String
containing the same characters as the list in the same order.

5. (12 points) Write an iterative and a recursive method to compute and return the length of a linked list.

6. (10 points) Write a method to print the contents of a circular linked list.

7. (12 points) Write the method that concatenates two doubly-linked lists.

8. (8 points) Consider a stack implemented as a reference-based list. Show the configuration of the list after each
push or pop operation.
Stack s = new Stack();
for (int i=0;i<5;i++){

s.push(i);
s.push(i+10);
}
for (int i=0;i<5;i++)
j =s.pop();

9. (10 points) Consider an implementation of a queue that uses an array of size 5. Show the array and the values
of front, back, and count after each enqueue or dequeue operation.

Queue g = new Queue();

for (int i=1;i<6;i++)
g.enqueue(i);

j = g.dequeue();

k = g.dequeue();

m = g.dequeue();

g.enqueue(j);

g.enqueue(k);

g.enqueue(m);

10. Write two versions of the method inQueue(n) that determines if element n is in the queue Your methods
should be written as follows:
a. (10 points) As an additional method inside the queueList class that implements queues with circular
reference-based lists (recall that they keep a reference to the last element of the queue).
b. (10 points) As a method outside the class that defines queues, that is, accessing the queue only
through the ADT queue operations.

11. Write two versions of the method inStack(n) that determines if element n is in the stack Your methods should
be written as follows:

a. (10 points) As an additional method inside the stackArray class that implements stacks with arrays.
b. (10 points) As a method outside the class that defines stacks, that is, accessing the stack only through
the ADT stack operations.

CS2401

Fall 2008
Exam 3

1. (12 points) In terms of n, what are the big “O” running times of the following code fragments? Explain your
answers.

c. void m(int [] A, int n){
System.out.printin(A[n]);

}
d. void m(int [] A, int n){
int temp =0;
while (n>=temp){
for(int i=0;i<temp;i++)
System.out.printin(A[i]);
temp++
}
}
e. void m(int[] A, int n{
if(n>0){
System.out.printin(A[n]);
m(A,n/2);
}
}
f. void m(int [] A, int n{
if(n>0){
System.out.printin(A[n]);
m(A,n-1);
}
}
2. (9 points) Write methods that receive an array A and an integer n and take the specified big-O running
times.
g. O(n)
h. 02"
i. O(nlogn)

3. (8 points) Trace the execution of bubble sort with the following input: 15,30,10,8, 35,31,22,40.

10.

11.

(8 points) Trace the execution of mergersort with the following input: 15,30,10,8, 35,31,22,40.

(8 points) Show the configuration of an initially empty binary Search Tree after inserting the sequence of
elements : 15,30,10,8, 35,31,22,40.

(9 points) Write the outputs produced by a) preorder, b) inorder, and c) postorder traversals using the tree
from question 5 as input.

(9 points) Show the tree from the question 5 after deleting the sequence of elements 30, 31, and 15. Draw the
tree after each deletion.

(12 points) Write a method that receives a binary tree T and prints the contents of all the nodes in T that have
exactly on child.

(12 points) Write a method that receives a binary search tree T and an integer k and prints the level where k is
found in T or -1 if kis not in T (recall that the root has level 0, the children of the root have level 1, and so
on).

(12 points) Write a method that receives a binary tree T and prints the value of the smallest element in T. You
may assume that T is not empty.

(12 points) Write a method that receives a binary search tree T and prints the value of the smallest element in
T. You may assume that T is not empty. Make your method as efficient as possible.

(8 points) Consider a hash table that resolves collisions by chaining and uses the hash function h(x) = x % 5.
What is the configuration of the table after inserting elements with keys: 15, 30, 10, 8, 35, 31, 22, and 40, in
that order?

[CS2401
Fall 2008
Final Exam

1. (10 points) Write a method that receives a 1D arrayv of integers A and an integer k and determines
if A contains at least one element that is greater that 4. (2 points) If A contains n elements, what
is the big-O running time of your method. in terms of n?

2. (10 points) Write a method that receives a 2D array of integers A and returns a 1D array containing
the sums of the rows in A. For example, if A = {{10.20.30}, {50, 100,200}}. your method should
return a 1D array containing {60.350}.

3. (8 points) Write a recursive method that receives two characters @ and b and a positive integer &
and prints a k& times, followed by b & times. For example. if a =x", b = 'y’, and k& =3, yvour method
should print xxxvyw.

4. (9 points) Consider the method written below.

public static void pl{int [] A, int k){
if (k<A.length){
Alk] = Ak-1]+ A[K];
PL(Ak+1):

¥

(a) Let A be initially {1,2,3,5,7,9,11}. Trace the execution of p1(A.1).
(b) In general, what does pl1(A,1) do?

(c) Let n be the size of A (that is, A.length), what is the " big-O” running time of pl, in terms of

n?

5. (10 points) Write a method that receives a String S and returns S in reverse.

6. (10 points) What will be the output of the following code fragment:

iNode x = null;

iNode v;

iNode z;

for(int i=0;i<10;i=i+2)
x = new iNode(i,x);

printList(x);

v = x.link;

z = v.link;

printList(v);

printList(z);

v.link = z.link;

printList(x);

vy = null;

printList(x);

7. (10 points)Write a method that receives a reference to the head of a linked list of integers L and an
integer & and returns the position where k is in L (starting with 0), or -1 if & is not in L. (2 points)
If L contains n nodes, what is the big-O running time of your method. in terms of n?

w0

10.

kS

12.

13.

14.

. (10 points) Write a method that receives an item &k and a queue @ as inputs and returns the position
where k is in @, from front to back. or -1 if k is not in @ (thus your method should return 0 if & is
at the front of the queue). You must only use the elementary operations of the ADT queue to access
@ and must not alter the contents of (.

. (10 points) Write a method that receives a stack S as input and deletes the largest element in S,
leaving the rest unchanged. You may assume S is not empty. Also, vou may only access S using the
operations associated with the ADT Stack

(4 points) Draw a binary search tree that contains the keys 1. 2. ..., 14. 15 and has the maximum
possible height. Draw a binaryv search tree that contains the same keys and has the minimum possible
height.

(10 points) Write a method that receives a reference to the root of a binary tree 7" and prints the
contents of all the internal nodes in 7. Recall that an internal node is a node that has at least one
child, that is. an internal node is anyv node that is not a leaf.

(10 points) Write a method that receives a reference to the root of a binary search tree 7" and two
integers & and m and prints all the elements in 7" that are greater than & and less that m (assume
k < m). Make your method as efficient as possible (that is. make no unnecessary recursive calls).

(10 points) Write methods that receive an array A and an integer n and take the specified big-O
running times.

(a) O(logn)

(b) O(n)

(c) O(nlogn)

(d) O(n?)

(e) O2")

(10 points) For each big-O funection in the previous question, give an example of an algorithm covered
in this class that has the specified big-O running time.

CS2401 Fall 2008

Lab1
Due September 5, 2008, 5:00 p.m.

Your first lab consists of writing the following methods that work on 1D arrays:

1.

Two methods to print the contents of arrays. The first method should work for arrays of type
double and the second should work for integers. Make sure your methods have the same
name (this is an instance of method overloading, a very useful feature of Java.)

Two methods to allow users to input arrays from the keyboard. Again, use overloading to
make the first method work with doubles and the second with integers.

Two methods to allow users to fill-up arrays with uniformly distributed random numbers.
Your methods should receive the minimum and maximum values and fill the arrays with
randomly-chosen values that are greater or equal to the minimum and less or equal to the
maximum. Use overloading as before.

A method that receives an integer and prints, in English, the sequence of digits in that
integer. Your method must use arrays of strings to store the names of the digits. A sample run
of your method would be as follows:

Enter an integer
15644

The integer 15664 contains the following digits:
one five six four four

A method that receives an array of integers in the 0 to 9 range and determines if the array
contains each of the single digits (0 to 9) at least once. For example if your method receives
the array A={0, 3, 4, 5, 0, 1, 2, 3} it should return false and if it receives the array A={1, 4, 6,
2,3,4,5,7,9,8,0,5, 1} it should return true. (Hint: use an array of Booleans)

A main method that illustrates the correct behavior of the methods in numbers 1 to 5.

(Extra Credit) Repeat problem 4, but now, instead of printing to the screen the sequence of
digits, have the computer read them aloud to the user. Consult Java sound resources on the
web for information about how to do this - it’s cool and it’s not too hard!

Here’s a possible sample output of your main method:

Testing Method 1 a
{1.1, 2.2, 3.3,4.4,5.5}

Testing Method 1 b
{1, 2,3,4,5}

Testing Method 2 a

Enter size of array of doubles to be input:
>> 4

Enter 4 numbers

>>4567

{4.0, 5.0, 6.0, 7.0}

Testing Method 2 b

Enter size of array of integers to be input:
>> 8

Enter 8 integers

>>45897 1023664445

{45, 89, 7, 10, 2, 36, 6444, 5}

Testing Method 3 a

Enter size of array of doubles to be randomly generated:

>> 4

Enter minimum and maximum values:

>> 0100

{9.559843287214331, 21.041310595035988, 84.60780683107396, 62.17104822610812}

Testing Method 3 b

Enter size of array of integers to be randomly generated:
>> 10

Enter minimum and maximum values:

>>0 100

{39, 96, 60, 68, 17, 47, 62, 15, 35, 12}

Testing Method 4

Enter integer to be broken into digits:

>> 478966

The integer 478966 contains the following digits:
four seven eight nine six six

Testing Method 5

Enter size of array of integers to be tested for the presence of every digit:
>> 20

Enter 0 to enter array manually, 1 to generate randomly:

>>1

The array

{9,5/0,6,8,8,0,5,4,8,7,91,0,7,3,6,4,4, 7}

Does not contain every digit from zero to nine

CS2401 Fall 2008

Lab 2
Due September 12, 2008, 5:00 p.m.

There are a number of problems, known collectively as “random walk” problems, which have
been of longstanding interest to the mathematical community. Some of these problems, although
extremely difficult to solve analytically, can be solved by 2401 students (hopefully!) using
simulation. One of them is as follows:

A cockroach is placed on a given square in the middle of a tile floor in a rectangular floor of size
n by m tiles surrounded by walls. The cockroach wanders randomly from tile to tile throughout
the room. Assuming that he may move with equal probability to any of the neighboring four tiles
(North, South, East, West) with equal probability, how many moves will it take him to touch
every tile on the floor at least once? If the cockroach bumps into a wall, its position is not
changed, but the move should be counted.

Your lab consists of implementing a simulation of this problem. Your program must prompt the
user to enter the number of rows and columns in the tile floor and the initial position of the
cockroach; it will then simulate the cockroach’s random walk and terminate when every tile has
been visited at least once. Your program must then output the initial parameters, the number of
moves taken, and a 2-D array showing the number of times each tile was visited. Also, write
methods to make sure that the sum of the elements in your array is equal to the number of moves
the cockroach made and that the minimum element in your array is 1 (why?).

A sample output of your program would look follows:

5

Enter number of rows:
Enter number of columns: 8
Enter starting row: 4
Enter starting column: 2
It took the cockroach 278 moves to visit every tile
The number of times it visited each tile is as follows:
8 9 6 6 10 13 14 15
6 4 6 6 7 13 16 8
4 2 3 4 2 5 13 7
4 4 1 1 4 8 14 18

1 1 1 1 2 6 12 13
The sum of the elements in the array is: 278
The minimum of the elements in the array is: 1

CS2401 Fall 2008

Lab 3
Due September 19, 2008, 5:00 p.m.

. Write a recursive method called print_nums that receives as parameter an integer n. The method will
print to the screen 1 in the first line, 1 2 in the second line, and so on until it prints all the numbers
from 1 toninaline. Your method should call another recursive method to print each line. For
example. If n =4, the method should print to the screen:

1

12

123

1234

. Write a recursive method to reverse the contents of a 1-dimensional array of integers.

. Write a recursive method to determine if a 1-dimensional array of integers is sorted in ascending
order.

. Solve programming exercise 1 from page 925 in the textbook.

. Solve programming exercise 4 from page 926 in the textbook.

CS2401 Fall 2008

Lab 4
Due September 26, 2008, 5:00 p.m.

The subset sum problem is an important problem in computer science. Given a set of positive integers S and
a target integer n, the goal is to find if there is a subset of S whose sum is n. For example, if S={1, 3, 6, 7}
and n =13, the answer is true, because the sum of {6, 7} adds up to 13, but if n =5, the answer is false
because there is no subset of S that adds up to 5. Write a program that prompts the user to enter a set of
positive integers S and an integer n and uses a recursive method to determine if there is a subset of S whose
sum is n. Notice that you don’t need to show the set of integers adding up to n, you just need to determine
if it exists.

Do exercise 15, from pages 928-930 in the textbook. To solve this problem, we strongly suggest that you
look at the example on pages 916 to 921.

CS2401 Fall 2008

Lab 5
Due October 7, 2008, 5:00 p.m.

1. Implement the kth-smallest algorithm discussed in class and test is using randomly generated arrays of
integers. Also, for every recursive call, print the contents of the array being processed and the value of k.

2. Write a method that receives a string S and returns true if S is a palindrome.

3. Some characters of the Spanish language do not exist in English; these are the accented vowels
(4,6,1,0,0), and “ene” (). These characters can create problems for some English-only systems. To
avoid these problems, one can replace the accented vowels by their un-accented counterparts and fi
by n. Write a method that performs this replacement. For example, if your method receives the
String “Juérez”, it should return “Juarez”, and if it receives “Cafion”, it should return “Canon”.

CS2401 Fall 2008

Lab 6
Due October 15, 2008

Your lab assignment consists of implementing two algorithms (described below) to sort lists of integers
implemented as a reference-based lists. Your program must prompt the user to select the length of the list,
whether the elements will be entered manually or generated randomly, and the choice of algorithm to use. As the
elements are entered they must be stored in a reference-based list (you may consider storing them in the inverse
order in which they are entered). After that, the selected method must be called to sort the list, and finally you
should display the resulting sorted list and the time it took to sort the list.

Algorithm A starts with the original list of elements and an initially empty sorted list, and repeatedly finds the
node that contains the element with the maximum value in the original list and moves it to the sorted list, until the
original list is empty

SortListA(L)
SortedList = empty list
while L is not empty
X = node with maximum element in L
remove X from L
add x at the beginning of SortedL.ist;
return SortedList

Algorithm B, takes the first element of the list as pivot, and splits the list into three lists; the first list contains the
elements that are smaller than the pivot, the second contains the pivot itself, and the third contains the elements
that are greater or equal to the pivot. Then the algorithm recursively sorts the first and the third lists, and finally it
concatenates the first list, now sorted, the list that contains the pivot, and the third list, also sorted.

SortListB(L)
If length(L) >1
let f be the first node in L
remove f from L
split L into three lists as follows:
L1 that contains all the elements that smaller that the element in f
L2 that contains (only) f
L3 that contains the elements of L that are greater or equal to the element in f
L1 = SortListB(L1);
L3 = SortListB(L3)
L = concatenate(L1,L2,L3);
return L

Extra Credit: Modify Algorithm B to implement the kth-smallest algorithm described in class.

CS 2401 Fall 2008

Lab 7

Reference-based Lists and Strings
Due Friday, October 24

Instructions

Your task is to implement the class LString, which uses reference-based lists of characters to implement standard
operations on strings. An LString will be implemented using a singly-linked list, where each node contains a
character.

Each node on the list is defined by the following class:

public class cNode{
public char info;
public cNode link;

public cNode(char c){

info = c;
link = null;
}
public cNode(char ¢, cNode x){
info = c;
link = x;
}

}

An LString, which consists of a list of cNodes, is defined as follows:

public class LString{
private cNode head,;

public LString(String S){
head = buildList(S);
}

private cNode buildList(String S){ // Builds a list of nodes containing the characters of S
if (S.length()==0)

return null;

else {
cNode x = new cNode(S.charAt(0),buildList(S.substring(1,S.length())));
return x;

}

You should extend the LString class to include the following operations:

1. void setCharAt(int i,char c) // Sets character at position i in the string to ch . It generates an
Il exception if i is greater than the length of the string minus one

2. void insertCharAt(int i,char ¢) // Insert character ¢ at position i. It generates an
Il exception if i is greater than the length of the string

3. void deleteCharAt (int i)// Deletes character at position i. It generates an

/I exception if i is greater than the length of the string minus one
void print() // Prints the string
LString copy() // Builds a copy of the string
int length() /I See page 620
char charAt(int i) /I See page 620
int indexOf(char ch) /I See page 620
9. intcompareTo(LString L) /I See page 620
10. int compareTo(String S) /I See page 620
11. void toUpperCase() // Replaces each lowercase letter by the equivalent uppercase letter
12. void toLowerCase()// Replaces each uppercase letter by the equivalent lowercase letter

N A

To test your work, implement a main method that illustrates the behavior of each of your methods.
For example, the code fragment:

LString S = new LString("UTEP Miners");
S.print();

System.out.printin(S.length());
System.out.printin(S.charAt(5));
System.out.printin(S.indexOf("n"));
System.out.printin(S.compareTo(S));

should output exactly the same results as the following code fragment:

String U = "UTEP Miners";
System.out.print(U);
System.out.printin(U.length());
System.out.printin(U.charAt(5));
System.out.printin(U.indexOf("n™));
System.out.printin(U.compareTo(U));

CS2401 Fall 2008
Lab 8

Due November 5, 2008, 5:00 p.m.

The subset sum problem is an important problem in computer science. Given a set of positive integers S
and a target integer n, the goal is to find if there is a subset of S whose sum is n. For example, if S={1, 3,
6, 7} and n = 13, the answer is true, because the sum of {6, 7}, which is a subset of S, is 13, but if n =5,
the answer is false because there is no subset of S that adds up to 5. Write a program that prompts the

user to enter a set of positive integers S and an integer n and uses a stack to determine if there is a
subset of S whose sum is n and prints the subset is it exists.

Exercise 19, from page 1233 in the textbook.

CS2401
Fall 2008

Lab9
Due Friday, November 14, 2008.

Your lab assignment consists of implementing the following algorithms to sort reference-based lists of
integers:

1. Selection sort
2. Bubble sort
3. Mergesort
4. Quicksort

Your program must prompt the user to select the length of the list, whether the elements will be entered
manually or generated randomly, the choice of algorithm he/she wants to use, and whether the sorted list
must be printed. As the elements are entered, they must be stored in a reference-based list (you may
consider storing them in the inverse order in which they are entered). After that, the selected method
must be called to sort the list, and finally, you must display the time it took to sort the list, the number of
comparisons performed by the algorithm, and, if requested, the resulting sorted list,.

CS2401 Fall 2008

Lab 10
Due December 4, 2008

Implement a method to build a binary search tree (BST) of integers. Your method must allow building a tree
with randomly generated elements or with elements entered by the user from the keyboard. Make sure that all
the elements in your tree are unique; if a number that is already in the tree is entered, it should be ignored.

Implement a recursive method to print the nodes in your tree in ascending order.

Implement a recursive method to print the nodes in your tree in descending order.
Implement a method to print the nodes in your tree ordered by level, starting with the root. Hint: use a queue.

Implement a method that receives an integer n and displays the contents of the parent and the children of the
node that contains n, if n is in the tree.

Implement methods to:
Print the smallest element in the BST
Print the largest element in the BST
Compute the sum of all the nodes in the BST
Count the number of nodes in the BST
Count the number of leaves in the BST
Count the number of nodes in the BST that have only one child.
g. Count the number of nodes in the BST that have two children.
(If implemented correctly, the sum of the results of), f), and g) should be equal to the result of d).

hO o0 o

CS2402: Data Structures and Algorithms

Course Description:

The definition and implementation of abstract data types; representation of data using
sets, lists, trees, and graphs; the design and implementation of traversal, search, and sort
algorithms; and the space and time analysis of algorithms.

Learning Outcomes

Note: my letter grades are as follows:

A is 85% and above;
B is 75% and above;
C is 65% and above;
D is 55% and above;
F is below 55%.

Level 3: Synthesis and Evaluation

A. Specify data structures and operations associated with abstract data types

¢ Ineach lab assignment
e MT3EX. 2 (70%)
e Final Part 1l (67%), Part 111.8 (75%)

Comment: Met.

B.

Define the signature and pre- and post-conditions for operations of an
abstract data type

¢ Ineach lab assignment, especially lab 4 (79%).

e Mostly in Quiz 2 Q1 (64%),

But also in all questions expecting algorithms:

Quiz 3 Q3 (67%), Q4 (75%), Quiz 4 Q1 (75%), Q2 (50%), Quiz 5 Q2 (56%)
MT1 Ex. 5 (40%)

MT2 Ex. 1 (65%)

MT3 Ex. 2 (70%), Ex. 3 (75%)

e Final Ex. 5 (80%), Ex. 9 (62%)

Comment: Met. The grades for MT1 were low but lower grades are usually observed
at the first MT. Similarly, students’ performance in quizzes is in general lower
(absences, lack of timely work on class topics).

C. Given a scenario, describe the abstract data types that could be created

e Ineach lab assignment
e MT3EX. 2 (70%)
e Final Part 11.5 (80%), Part 111.8 (75%)

Comment: Met.

D. Implement binary and binary search trees, using pre-, post-, or in-order
traversals as appropriate for a given situation
o Lab4 (79%)

Quiz 4 (70%)

Quiz 5 Q1 (88%)

MT1 Ex. 5 (40%)

MT3 Ex. 2 (70%)
e Final Part 11.5 (80%)

Comment: Met. Same comment as for B for MT1.

E. Judge which data model (list, tree, graph, or set) is appropriate for solving a
problem
e Labs 2 (75%), 3(77%), 4 (79%), and 5 (76%)
e MT2EX. 1 (30%)
e MT3EX. 2 (70%)
e Final Part 111.8 (75%)
Comment: Met. Although students’ performance was well below reasonable at MT2,
they significantly improved by the end of the semester (see averages for MT3 and
Final).

F. Justify the choice of a data structure to solve a problem based on issues such
as time, and space, of the data structure
e Mainly in Labs 2 (75%), 3 (77%), and 5 (76%)

Comment: Met.

G. Judge which implementations are best suited for an application that requires
a list data model: lists, circular lists, circular queue, or generalized list
o Lab3(77%)

Comment: Met.

H. Judge whether an array or linked implementation is best suited for an
application that requires a data model
e Labs 3 (77%) and 5 (76%)
e MT3EX. 2 (70%)

Comment: Met.

I. Judge which graph representations (adjacency list, adjacency matrix, edge
list) are appropriate for solving a problem
e Lab5(76%)
e Final Part IV (65%)

Comment: Met.

J. Develop algorithms that are based on depth- and breadth-first traversals of
general trees, binary trees, and graphs
e Labs 2 (75%) and 4 (79%)

Quiz 3 Q4 (75%)
Quiz 4 (70%)
MT1 Ex. 5 (40%)
MT2 Ex. 1 (65%)
e Final Part 111.8 (75%), Part 111.9.4 (50%)
Comment: Met. Same comment as for B for MT1. The lower performance at the Final
is due to the lack of time to complete the exam. Many students did not answer Part
111.9.4.

K. Judge which sort algorithm (insertion, selection, mergesort, heapsort,
quicksort, radix) is appropriate for solving a problem
e Lab1(78%)
¢ Many non-graded in-class exercises

Comment: Met.

L. Judge which search algorithm and data structure is appropriate for solving a
problem
e Lab4(79%)
e MT2EX. 4 (86%)

Comment: Met.

M. Implement a recursive solution to a problem

e Labs 1 (78%) and 2 (75%)

e MT2EX. 1.2 (40%)

e Final Part 1V.9.4 (50%)
Comment: Partially met. Students still have hard time using recursion when it has to
be their own “creation”. They did much better in labs than in exams though, which
indicates that, given more time, they tend to overcome their problems.

Level 2: Application and Analysis

A. Categorize algorithms based on programming strategy, i.e., divide-and-
conquer, greedy, backtracking, and dynamic programming strategies
e Labs 2 (75%) and 5 (76%)

Comment: Met.

B. Analyze iterative and recursive algorithms with respect to time and space
Lab 1 (78%)
Quiz 2 Q3 (90%)
Quiz 5 Q1 (88%)
MT1 (60%)
MT2 Ex. 1.2 (50%)
MT3 Ex. 3.4 (75%)
e Final Part | (65%), Part 111.7 (72%)
Comment: Met.

C. Describe the applications for a dictionary/map ADT, e.g., the application of a
symbol table
e Covered in class with exercises, not in any graded material

D. Give representations for and operations on a binary tree, general tree,
threaded tree, heap, binary search tree, B-tree, quadtree, and graphs
e Lab4(79%)

Quiz 2 Q3 (90%)

Quiz 3 Q4 (75%)

Quiz 4 (70%)

Quiz 5 Q2 (65%), Q4 (75%)

MT1 Ex. 5.1 (85%)

MT2 Ex. 4 (86%)

MT3 (75%)
e Final Part 111 (70%)

Comment: Met.

E. Determine the order for a B-tree based on memory issues
e Covered in non-graded homework.

F. Apply graph algorithms for determining shortest paths (Dijkstra’ s and
Floyd’s algorithms), minimal spanning tree (Prim’s and Kruskal’s
algorithms), transitive closure (Floyd’s algorithm), and topological sort
e Lab5 (76%)

e Final Part IV (65%)
Comment: Met. But there is room for improvement.

G. Select an appropriate sorting algorithm for a given situation and defend the
selection
e Lab1(78%)
e Not covered in exams but extensively studied in class

Comment: Met.

H. Explain differences and similarities among approaches for resolving
collisions in hash tables, e.g., linear probing, quadratic probing, double
hashing, rehashing, chaining
e MT2 EX. 3 (79%)

Comment: Met.

I. Apply design methods and other problem-solving strategies. Examples might
include (but are not limited to) functional decomposition, design patterns,
top-down design, abstraction, CRC
e Lab 2 (75%)

e MT2EX. 1 (40%)

Comment: Partially met. This was not very much emphasized in class, which can
explain the lower performance of students on related questions.

Level 1: Knowledge and Comprehension

Level 1’s outcomes are those in which the student has been exposed to the terms and
concepts at a basic level and can supply basic definitions. The material has been
presented only at a superficial level. On successful completion of this course, students
will be able to:

A. Describe the characteristics of static, stack, and heap allocation
e Covered in class, not covered in any graded material.

B. Explain issues related to disk read/write time
e Covered in class, not covered in any graded material

C. Define strategies for balancing a binary search tree
e Quiz2 ex. 3 (90%)
e Quiz5ex.1(88%), ex. 2 (50%), ex. 4 (65%)
Comment: Met.

D. Define the algorithms for implementing B-tree operations
e Assigned as a non-graded homework.

E. Define the procedure for conducting an external sort
e Covered in class, partially covered in lab (Labl on sorting algorithms — 78%).
Comment: Met.

Recommended laboratory assignments:

The following list represents a set of suggested assignments for this course. It is not
intended to be comprehensive and may be modified at the instructor’s discretion.

1. Implement a discrete simulation to model queuing systems
e Lab 3: discrete event simulation of a drive-through.
e Result: 77% average

2. Write a parser that stores the results in a data structure, allowing the user to
query the structure
e Lab 3 requires analyzing data stored from past simulations.
e Lab 4 on genealogical trees required students to parse a “family” file and
build corresponding trees that were to be queried afterwards.
e Results: 77% (lab3); 79% (lab4).

3. Write a program in which the central data structure is a graph

e Lab 5 required students to use graphs to model computer networks.
e Result: 76%.

4. Write a program that collects empirical data (e.g., number of collisions in a

hash table or execution time for a sort algorithm) and analyze the results

from the program

e Lab 1 on sorting algorithms included a theoretical as well as an experimental
analysis on sorting algorithms’ complexity.

e Lab 2 on Hitori required students to experimentally analyze the time
complexity of solving algorithms.

e Lab 3 on simulation required students to collect data in order to determine the
best setting/schedule of tellers at the drive-through.

e Results: 78% (labl), 75% (lab2), 77% (lab3).

Comments by Instructor:

All required material was covered, although not necessarily included in graded
assignments (e.g., B-trees, static, stack, and heap allocation).

Overall, by looking at the grades, and from discussions with the TA and Peer-Leaders, it
appears that students have difficulties in:

Topics that are abstract and /or theoretical; e.g., complexity (time, space, ...)
Implementation: although not particularly reflected on the grades, but reported
from TA, and also shown on all exams containing algorithms to trace, students
still have troubles designing and understanding simple pseudo-code for instance.
During Fall 08 we put a special emphasis on writing pseudo-code and developing
algorithms (included in many exams and quizzes). We also asked students to turn
in pseudo-code of their labs prior to their final submission of their code in order to
force them to practice.

As reported from labs,

Students still struggle with programming in java.

Although we insisted on it even more than usual over the whole semester (since it
was a conclusion of the previous assessment report), students still struggle with
testing: they do not understand why it is so crucial and have troubles designing
sound testing strategies. They do not value this stage of their labs, which is
affecting their grades.

They also lack writing skills. This semester, we made sure to always provide a
detailed outline of the expected reports (for each lab). Nevertheless, most of them
do not value or understand the importance of being able to clearly communicate
their work and results, and turned in very poorly written and incomplete reports.

Actions to take:

1. Include B-trees in graded assignments, and more generally grade systematically
all items of the outcomes (in particular level 1 outcomes).

2. Put more emphasis on designing recursive solutions.

3. Reserve more time for covering design methods and other problem-solving
strategies, aside from labs.

4. Provide extra programming and testing tutorials to compensate with the students’
programming weaknesses. In particular, tutorials could be provided in labs on
simple concepts, or we could make use of PLTL sessions to review the unclear
points of java implementation.

Comments by Committee:

Strengths of course:

The majority of outcomes was met.

¢ Instruments test outcomes at the appropriate level.
Emphasis on describing work done by means of a report is a strong point of lab
assignments.

Opportunities for improvement:

Issues:

e Limited coverage of topics in graphs, in particular single-source shortest paths and
topological sorting.

e Lack of separate assessment of understanding of specific graph algorithms.

e There was no redundancy in assessment, as graphs were only tested in final exam.

Possible approaches to address issues:

Include gquestions about graphs in third partial exam, as well as final.

Arrange to spend more time on graph algorithms — this may be difficult, as course covers
a large amount of material.

Recommendations for change to course delivery:

The amount of guidance given for labs and specially lab reports could be progressively
reduced as the semester progresses to encourage more initiative from students.

Recommendations for changes to program:

Outcomes, in particular those at level 3, are somewhat vague, thus it is hard to map
instruments to them. It is suggested that the committee work on modifying them to
simultaneously align better with ABET requirements and ease assessment.

The amount of material is excessive for a one-semester course. We suggest a few non-
essential topics be eliminated, including: threaded trees, quadtrees, and edge list
representations of graphs.

Assessment Instruments

(CS2402 - Data Structures INAMIE s coiicnisaismsnimnsi samonvenans
MIDTERM 1
80 minutes — 60 points

This exam is to be done individually. It is a closed-notes closed-books exam.
Your copy has to be clean, your answers readable. All answers need to be justified.
Failing to meet any of the requirements will result in at least 5 points off.

Exercise 1. [S points] Give the running time function and big-Oh of the following
fragment of code:
for (int i=1; i<=n; i*=7)
sum++;

Exercise 2. [10 points] Give the running time function and big-Oh of the following
fragment of code:
for (int i=0; i<n; i+=7)
for (int j=0; j<i; j+=2)
sum++,

Exercise 3. [15 points] Give the running time function and big-Oh of the following
fragment of code:
for (int i=1; i<=n; i*=7)
for (int j=0; j<i; j+=2)
sum++;

Exercise 4: [10 points] What is the time complexity of an algorithm whose time
complexity can be expressed as the following recurrence formula:

F(n) = 2*F(n/2) +n

F(1)=1

Exercise S. [20 points] Arithmetic expressions can be represented using what we call
expression trees. For instance,
e 3 +4 would be represented using the following tree:

e (6+4)*(7—(1*3)) would be represented as:

A way of evaluating expressions consists then in traversing the corresponding expression
tree appropriately. In particular, the way evaluations can be performed is by:
e first, evaluating the subtrees;
e second, combining the results obtained in each of the subtrees with the operator
that is at the root.

Question 1 [10 points] Write the pseudo-code of the algorithm that performs such
evaluations.
Note: your algorithm should not be recursive and has to make use of a stack.

Question 2 [5 points] As mentioned carlier in the description of the problem, your
algorithm (your answer to Question 1) is a traversal. What kind of traversal is this?
Hint: this is one of the traversals / DFS-like algorithm that we covered in class.

Question 3 [5 points] Your algorithm (i.e., your answer to Question 1) is related to the
method for expression evaluation that you read about in the textbook. How are these two
algorithms related?

(CS2402 - Data Structures NAME:...ccciiiiiiiiiiiiiiiieinan,
MIDTERM 2
80 minutes — 75 points (4 pages / 4 exercises)

This exam is to be done individually. It is a closed-notes closed-books exam.
Your copy has to be clean, your answers readable. All answers need to be justified.
Failing to meet any of the requirements will result in from 5 to 10 points off.

HITORI
Exercise 1 [10 points]:
e What is the time complexity of the simple Depth-First Search (backtracking)
algorithm in the case of solving a Hitori puzzle of size n x n? Justify your answer.

[5 points]

e How to modify the DFS algorithm in the case of the Hitori, in order to improve
this time complexity? Justify your answer. [§ points]

DISCRETE EVENT SIMULATION
Exercise 2 [20 points] In the case of the bank simulation covered in class:

e What are the expected outcomes of the simulation? [5 points]

» What are the events that are considered? Why not more? Why not less? [5 points]

e Point out and describe in details two main differences that exist between the bank
simulation seen in class and the drive-through simulation of lab3. [10 points]

Difference 1:

Difference 2:

HASH TABLES
Exercise 3 [20 points]
s What is perfect hashing? [5 points]

* Suppose that you need to hash social security numbers (SSNs). Propose a hashing
function for this problem. Justify all the features of your hashing function.
[3 points]

e Now, suppose that you need to hash the 800 UTEP ID numbers. Propose a
hashing function for this problem. Justify all the features of your hashing
function. [§ points]

e How is this second hashing function different from that of the SSNs? Justify the
reason why you did not design them the same way. /5 points]

TREES
Exercise 4 [25 points]
e Suppose that you are given a tree of p levels.
o What is the configuration of such a tree with the minimum number of
nodes? And what is this number of nodes? [5 points]

S2402 — Data Structures NAMI s siiiieiiiennnnreinasssrasasans
MIDTERM 3
80 minutes — 95 points

This exam is to be done individually. It is a closed-notes closed-books exam.
Your copy has to be clean, your answers readable. All answers need to be justified.
Failing to meet any of the requirements will result in from 5 to 10 points off.

BINARY TREES
Exercise 1 [25 points]:
¢ Suppose that you have to implement a binary tree that has n levels, using an array.
o What is the size of the array that you need to allocate. Justify your answer.
[10 points]

o Explain how you use an array to represent a binary tree. In other words,
given an array [al, a2, a3, a4, a5, ..., ak], what is the corresponding binary
tree? [§ points/

¢ Suppose that you have to implement a complete binary tree with n elements.
o What is the number of levels in the corresponding binary tree? [10 points]

BINARY SEARCH TREES
Exercise 2 [1S points)
e Suppose that you have to use a binary search tree in order to find the kth largest
element of a set of elements. /15 points]

o Describe the binary search tree that you use, with the possible
enhancements that you want to bring to it.

o Describe the algorithm for find-kth-largest(BinarySearchTree t, integer k)
that takes as an input a binary search tree t (possibly enhanced as you will
have described) and an integer k, and returns the kth largest element
within tree t.

AVL TREES
Exercise 3 [30 points]
e Whatis an AVL tree? [5 points]

e Build an AVL tree with the following sequence of numbers. Explain each step of
the process, name each transformation, and keep the indices of the tree updated.
9,1,7,2,5,6,8,3,4
[10 points]

e Describe, using commented pseudocode, the algorithm for inserting a new node
into an AVL tree. [10 points]

o What is the cost of searching for a given element in an AVL tree? Justify your
answer. [5 points]

(CS2402 — Data Structures NAME:...ccocciviiiiniiiiiiinneienennnn.
FINAL EXAM: Tuesday December, 9™ from 1pm to 3:45pm
165 minutes (estimated actual time: 90 to 105 minutes) — 100 points + 10 extra-credit

GRADE:
I: 125; 1I: /25; I1l: 135; 1V: /25

This exam is to be done individually. [t is a closed-notes closed-books exam.

Your copy has to be clean, your answers readable. All answers need to be justified.
Failing to meet any of the requirements will result in at least 5 points off. Besides, any
answer that is not fully justified will only be given half of the full potential credit at the
most.

PART I: Time complexity [25 points]

Exercise 1. [10 points] Give the running time function and big-Oh of the following
fragment of code:
for (inti=0; i<n; i+=4)
for (int j=0; j<i; j+=3)
sum++;

Exercise 2: {10 points] What is the time complexity of an algorithm whose time
complexity can be expressed as the following recurrence formula:

F(n) = 3*F(n/3) + n

F(1)=1

Exercise 3: [5 points] Consider the algorithm of bubble sort. Let us denote the time
complexity to run bubble sort on an input of size n by T(n). What is the recurrence
formula that describes T(n) in terms of T of a smaller input size.

PART II: Stacks and queues [25 points]

Exercise 4: [5 points] How are a queue and a priority queue different? Similar?

Exercise 5: [20 points] Consider the following algorithm A:

Given a binary tree T to explore and an integer k as an input, algorithm A traverses and
outputs T in a BFS (=level order) manner over the first k levels, and then performs a DFS
(=pre-order) traversal of the remaining levels.

1. What is the result of running A with input (T,3)? where T is defined as follows:
[5 points]

2. Write the commented pseudo-code of algorithm A. [15 points]

PART III: Trees [35 points]

Exercise 6: [10 points] Describe the following tree:

Exercise 7: [15 points] What is the cost of:
e Traversing a binary search tree of n elements?

e Searching for an element in an AVL tree of n elements?

e Searching for an element in a min heap of n elements?

Exercise 8: [10 points] Sort the following sequence of numbers in increasing order,
using heap sort, as studied in class. Make clear the data structure(s) you use and show
each step of your sorting.

9 1, 8 2, 7, 3, 6, 4, 5

PART IV: Graphs [25 points]

Exercise 9. [25 points] Consider the following graph, represented as an adjacency
matrix:

OO |

O OO O

(o] Ll Rl Rl favd

O OO O

OO ||
OIS ||| —|—

1. What kind of graph is this? [5 points]

2. Is the representation of this graph as a matrix a good choice? [5 points]

3. Isthis graph connected? Strongly connected? If not, how many connected or
strongly connected components are there in this graph? [5 points]

4. If you were to implement an algorithm that:
a. Detects if a graph of the same kind is connected;
b. And if it is not, determines the number of (strongly) connected
components;
how would you proceed? Write the outline of such an algorithm. [10 points]

CS82402 — Data Structures
1* 1ab assignment
To be turned in on September, 11™ at 11:59pm

In this assignment, you have to consider each of the following algorithms:
1. Insertion sort;
2. Bubble sort;

3. Merge sort.

For each of these algorithms, your assignment consists in:

1. Theoretical analysis:

1.

2

determining their running time function “on the paper” by using the rccursive version of
their implementation (hint: you have to use a recurrence formula);
providing their big-Oh, worst-case and best-case time complexity;

2. Experimental analysis:

1.

W 12

4.

designing a testing strategy to test each of the above-mentioned algorithms (their non-
recursive version) to confirm the theoretical results obtained at step one of this assignment,
running the corresponding experiments;

reporting the results of your experiments, i.¢., the number of steps performed for each
algorithm for different input sizes (and [hint] for different input data of the same size);
analyzing the results and discussing them.

You are expected to tumn in:
1. Areport containing (a template is available on the webpage of this course and also at the

bottom of this lab subject):

L.

2

an introduction: describing the topic of this assignment and providing an outline of the

report;

a section per algorithm, each section containing the following subsections:

1. adescription of the algorithm: in plain english;

the pseudocode of the algorithm: both the recursive and non-recursive versions;

the theoretical analysis of the recursive version, along with the big-Oh, best and worst

case;

4, the experimental analysis where you first present your testing strategy, then you report
the results of your experiments, and finally analyze and discuss them;

5. alast subsection where you compare the theoretical and experimental results and you
discuss their being similar or different;

w

3. a conclusion: in which you recall what was done, what was learned from doing this lab. what

1

were the challenges, how they were overcome.

Your code containing:

.

2.

the well-indented, well-documented java code of the above-mentioned algorithms (non-
recursive version);

note: it is important in your code to point out the counters that you use in order to keep track
of the number of steps run within the algorithm.

How to submit:

To whom:
This assignment is to be turned in to both your TA, Jaime Nava, jenava@miners.utep.edu, and your
professor, Martine Ceberio, meceberio@utep.edu,

Format of the email:
When submitting,the subject of your email has to be:
[cs2402] labl: YourLastName YourFirstName.
For instance, when Luis Garcia submits his assignment, the subject of his email will be:
[cs2402] labl: Garcia Luis.
Failing to do so will result in 5 points off.

Format and name of the submitted files:

The files that you have to attach to your email when submitting are:

- the file of your report in .doc or .pdf format (.docx not allowed): the name of your file has to be:
YourLastName-YourFirstName.doc or YourLastName-YourFirstName.pdt

- the compressed file of your code along with experiments (if relevant) in .tar, .zip, or .tar.gz format
(.rar not allowed): the name of your file has to be YourLastName-YourFirstName.tar or
YourLastName-YourFirstName.zip, or YourLastName-YourFirstName.tar.gz.

Failing to follow the format will result in 5 points off per mistake.

Template for the report:

CS2402 - LAB 1
YourLastName YourFirstName
Due date

1. Introduction
* describe the topic of this assignment
* provide an outline of the report

2. Insertion sort

2.1. Description of the algorithm
2.2. Pseudocode of the algorithm
Both the recursive and non-recursive versions
2.3. Theoretical analysis
Analysis of the recursive version of insertion sort
Big-Oh notation
Best and worst case: along with the corresponding configuration of the input data
2.4. Experimental analysis
* your testing strategy
* results of your experiments
*analysis and discussion of the results
2.5. Comparison

* you compare the theoretical and experimental results
* you discuss their similarities or differences

3. Bubble sort

.1. Description of the algorithm
2. Pseudocode of the algorithm
Both the recursive and non-recursive versions
3.3. Theoretical analysis
Analysis of the recursive version of bubble sort
Big-Oh notation
Best and worst case: along with the corresponding configuration of the input data
3.4, Experimental analysis
* your testing strategy
* results of your experiments
*analysis and discussion of the results
3.5. Comparison
* you compare the theoretical and experimental results
* you discuss their similarities or differences

L Lo

4, Merge sort

4.1. Description of the algorithm
4.2. Pseudocode of the algorithm
Both the recursive and non-recursive versions
4.3, Theoretical analysis
Analysis of the recursive version of merge sort
Big-Oh notation
Best and worst case: along with the corresponding configuration of the input data
4.4, Experimental analysis
* your testing strategy
* results of your experiments
*analysis and discussion of the results
4.5, Comparison
* you compare the theoretical and experimental results
* you discuss their similarities or differences

5. Conclusion
* recall what was done. what was learned from doing this lab, what were the challenges, how they
were overcome

CS2402 — Data Structures
2" lab assignment
To be turned in on October, 5™ at 11:59pm

This assignment is intended to make you practice on

1. Stacks
2. Backtracking
Objectives:

I. Understand the backtracking algorithm and its power to generate and test possible paths to solution
Refresh your practice of stacks
Understand the notion of efficiency of programs through practice on a logic puzzle: Hitori

) N

Description of the logic puzzle:

In the game of Hitori, you are given a 9x9 grid filled with numbers ranging from 1 to 9. The objective of the
game is to shade squares (i.e., cells of your grid) so that numbers don’t appear in a row or column more than
once. More information at: http://www.menneske.no/hitori/eng/ and many others.

This puzzle can be solved using a backtracking procedure, using a stack.

You are expected to implement and program a solution to the Hitori puzzle.

You are expected to turn in:
1. A report containing:
1. an introduction: describing the topic of this assignment and providing an outline of the report;
2. adescription of your algorithm (simple backtracking): in plain english; in particular, you have to
justify/prove that your algorithm actually solves the Hitori puzzle:
the pseudocode of the algorithm (not code!, and well commented);
4. the experimental analysis of your algorithm, where you first present your testing strategy, then you
report the results of your experiments, and finally analyze and discuss them:
5. EXTRA CREDIT (15 points): a last subsection where you propose a possible improvement of your
algorithm, implement it, and compare it through experimental results to your first version of it;
6. a conclusion: in which you recall what was done, what was learned from doing this lab, what
were the challenges, how they were overcome.

[W'9]

b2

Your code containing:
the well-indented, well-documented java code of your algorithm(s);

How to submit:

To whom:
This assignment is to be turned in to both your TA, Jaime Nava, jenava@miners.utep.edu, and your professor,
Martine Ceberio. meeberio@utep.edu.

Format of the emuail:
When submitting,the subject of your email has to be:
[cs2402] lab2: YourLastName YourFirstName.

For instance, when Luis Garcia submits his assignment, the subject of his email will be:
[cs2402] lab2: Garcia Luis.
Failing to do so will result in 5 points off.

Format and name of the submitted files:

The files that you have to attach to your email when submitting are:

- the file of your report in .doc or .pdf format (.docx not allowed): the name of your file has to be:
YourLastName-YourFirstName.doc or YourLastName-YourFirstName.pdf

- the compressed file of your code along with experiments (if relevant) in .tar, .zip, or .tar.gz tormat (.rar not
allowed): the name of your file has to be YourLastName-YourFirstName.tar or YourLastNaine-
YourFirstName.zip, or YourLastName-YourFirstName.tar.gz.

Failing to follow the format will result in 5 points off per mistake.

msiw tad Yo sunod ¢ ut ynsal fjim 10uiog s Mmooy o1
Z1R) SWENISILLING & -AUmNISL N0 | 10 .n,n,oEuz_E._m._:oy.oqu_mﬁ._:cb 10
TRFSMBNISILLING A -3RIBNISETMO A 39 01 SBY 9]y IN0K JO ARG 1 ‘(pamoy|e Jou Jul°) ey
ziduey g0 'diz ey ut (1ueazjos 1) AU mLIIITS [UOJE APOI INDK JO 3l passarduwiod ay -
Jpd WRNISIJINO A -SwEpgsETINO 4 10 IOPTIAWENISILLING & -SWENISETIN0 & 3q
01 S 311 mo4 Jo awey ay) (pamo|[e 10u X20p') 180y 1pd- 1o 20p° UIJIGURT MDA JO 3jy A -
i21e JUDNWNS usysm [1ewa moK 61 yaeRE o) aaey noL ey sagy ay g
sapf papnugns aup fo swnu pun o

J30 sunod ¢ ul ynsar [1m os op 0) Sureq
SIn7 eren [eqe| [Zopzso]
3q {1t [1ewa s1Y 30 302(qns St “uswuBISse SIY SHwqns DI24DD) SINT USYM ‘2dURISW 10
"SWENISILIING A aWeNISe N0 4 (£qe| [Z0p7so)
‘39 03 Seq [1ewa JnoA o 13gns yr§umwuqns uaym
‘Bz 2y1 fo 1nuido.g

Jjo siutod ¢ w1 ynsas fjim os op 01 Suipey

NP2 ANIOTINGES ‘oL1aga)y sutliepy ‘10ssaj01d moAk

{WJeARUST ‘eARN owiwy v | in0A T6q o1 in pawiny 2q 0} si juawudisse sy,
SUOYM O f

1mgns 0} Moy

‘JUTNEI03 9pos oy 7

"AUWODIA0 3am At MO “SOBUS[[RYD A1 A1om JRI M ‘qe|
STt SUI0p oy pawresy sem yeym ‘9uop SeA 1BYAM [[2931 NOA YOIYM WL UOIST[dU03 ¥ s
‘uonenwIs
211 J0 Ino paidadia sea Jetp Swwoano at o) pes| Alsnomqo pinons uorssnastp
A4} W) ssnosip pur szAfeue Ajjeuy pue ‘suswiadxs ok Jo sunsas ayn wodal nok
uaty ‘A3a1ens vonenuns/Junsa ok Juasaid 151 nOA 213yM “URS NOA SuonEpUIS 2ty ¢
‘{sananb Quoud pur) sananb 3y Jo wowsFeue o s208
2194 (PAAUIUWIWOD [jam 3q 0) SeY 1 pue *apo2 st 10u) wyiLes e ap jo apmaoprasd ayy ¢
‘op o) pasoddns s1 11 jmym 520p unpLoS|e nok 1841 an0sd K nent
01 2aey noA gnaed o ysidus winid w ‘unpuod[e mod jo uonduasap e T
‘uodas oy
Jo surpno ue Suiptaoid pue Jusuruisse sty go 91doy ays urquosap :uononponut ue g
‘SUIUIRInO03 Ji0dal v '|
-0 um 0 p3)oadxa a1e no 4

‘WU3Y0 001, SB [[am 51 'Siaem Jo Swn 3[pi oy 's122 Jo ananb o 10) suwvaw

,8U0] 003, Jeym apioap 0) Arqisuodsas anok st 41 *3s1m00 30 “Suo] 001 oy pue uayo ooy 3|pi Jou
21 s1ayem g pue (10) Sunired sy 10] FuruayAUIAD 100 §1 SED Jo ananb a1 pue) Suop 0oy em
03 9ABY 1,UOP s19wWO0IsND 1Ry OS S1od]ay JO JIGUINT 31 21 “SIANEM 10 I3quIny isaq) amuuaagg
‘UOHLB[NUIIS SIGY J0 100 %935 IM UoIEWI0JUL Jey M

9P10 03 101D € 10J SO3E) 1 BWY) SY) PrESAUSIP [[IM M ‘uonenuys iy uj ;10N

(own uonvredad paroadya ap Moy nok yaiym 16j) sadiates paradxa RSP Qs S
JUSIJIIP JE FUNAOD SIBWOISND aARY NO & (316G Pa103dx> a1 3o wred s1 1 osnedaq suonejnuns
mof uo Suppuadap Lrea |jim saguinu SIp) SI2NEM JO JGUINU UTeLe) & ey nog (gysarnsed sapo
PUE 331500 398 1) daumsul 10]) 901AI9S yEnoIyI-oALp ¢ SIE[AUIS 0 IARY [{Im nOK ‘qe] ST J0]
PELS 03 uOBENILS Iy Jo uondiaasac

‘uong[nuIs A2 ut sananb Ajuoud pue sanonb Sunendnrew je yustoord woo3g ¢
SWIBAS JURAR]R]
M3} im pajuswardw aq uea uonemws xafdwos ABunwaas e uaas jey) puRISIapun 7
(WIS UreIqo am op Moy
(S3WON0 pa15adxas ay ate ey JUONENUIS UM 3 Op AYm ‘uonE[nUILS pueisiopuny |
:$3A39[qQ
(uouruawa)duit 110y 10U 310u) sansnb Quoudjoasnay; ¢
UOLBINWIS JUIAS 212105i(] |
uo a319e1d nok axeur 0 Papualul st JuswiuSisse sy

“(s)uryuusod[e moK Jo 2pos eael PaIUBWNI0DP-{[am ‘paIUSpUI-|joM 1)

wdeg:[1 Je ,67 “13G012Q 1o uy pawtny ’q oL
Juswusisse qg| pi€
saImONNS Bleq - Z0pzSD

CS2402 — Data Structures
4™ 1ab assignment
To be turned in on November, 20™ at 11:59pm

This assignment is intended to make you practice on
1. Trees: different kinds of trees;
2. Going back and forth from general trees to their binary representation.
Objectives:
1. Understand how to deal with a binary tree to represent a general tree.
2. Become proficient at manipulating trees
3. Get acquainted with DAGs.

Description of the situation to simulate:

In this lab, you have to build and manage genealogical trees. There are two different versions to
be implemented (one for regular credit, the second one for extra credit).

For each version, you will have to implement the following functionalities:
e Duilding a tree:
file > tree
+ other methods depending on the version
o finding someone in a given tree:
name x tree - boolean
e inserting someone in a given tree:

name x tree = tree
+ other methods depending on the version

o determining relationships between two people:

name x name x tree > type of relationship (if any)
¢ determining if two people are related:

name x name x tree - boolean
e printing a tree:

tree > void

Hereafter follow the specific features of each of the two versions:

1* version (compulsory): Genealogical trees that are such that:

Building genealogical trees can only result from:

1. Reading a text file containing the necessary information; e.g., lines of “Parent(x.y)" meaning
that x is the parent of y. So your whole tree is based on this unique kind of information;

2. Adding new members in a tree by specifying:
1. the tree T in which you want to add information

2. the node N that is going to receive a new child C
by invoking: T.add(N,C)

Such a tree is originally a general tree. You have to implement it as a binary tree (first-child next-
sibling representation). In particular, the printing method that you have to implement has to print
the original general tree, not the stored binary tree.

2" version (extra credit: 15 points): Genealogical trees that are such that:

I. Reading a text file containing the necessary information: e.g., lines of “Parent(x.y)”, meaning

that x is the parent of y, or “Married(x,z)”, meaning that x is married to z. So your whole tree

is based on these only two kinds of information;

Adding new members in a tree by specifying:

1. the tree T in which you want to add information

2. the node N that is going to receive a new child C

by invoking: T.addParent(N,C)

3. the node N that is going to receive a new spouse S, which in turn belongs to its own
genealogical tree T2:

by invoking: addSpouse(N,T,S,T2)

Such a method will result in merging part of T and T2.

8]

Such a tree is originally a general directed acyclic graph (DAG): i.e., trees that are explicitly
directed and can be connected together but without cycles, meaning that it can allow to *link™ two
trees when someone from one tree is married to someone from another tree.

In particular, when asked to print a given tree T, you will have to print it (as in the first version),
including information about the spouses.

You will have to implement it as binary trees (first-child next-sibling representation).

You are expected to turn in:
1. A report containing:
1. an introduction: describing the topic of this assignment and providing an outline of
the report;
2. asection per version, each containing:

. adescription of your implementation(s) and algorithm(s): in plain english; in
particular, you have to justify/prove that your algorithm does what it is supposed
to do;
the pseudocode of the algorithms (not its code, and it has to be well commented):
3. the experiments you run to show that your implementation is sound and its

performance practical.
a conclusion: in which you recall what was done, what was learned from doing this
lab, what were the challenges, how they were overcome.

I

(%]

o

Your code containing:
the well-indented, well-documented java code of your algorithm(s);

How to submit:

To whom:

This assignment is to be turned in to both your TA, Jaime Nava, jenava@miners.utep.edu, and
your professor, Martine Ceberio, mceberio@utep.edu.

Failing to do so will result in 5 points off.

Format of the email:
When submitting,the subject of your email has to be:
[¢s2402] labd: YourLastName YourFirstName.
For instance, when Luis Garcia submits his assignment, the subject of his email will be:
[cs2402] lab4: Garcia Luis.
Failing to do so will result in 5 points off.

Format and name of the submirted files:

The files that you have to attach to your email when submitting are:

— the file of your report in .doc or .pdf format (.docx not allowed): the name of your file has to
be: YourLastName-YourFirstName.doc or YourLastName-YourFirstName.pdf

— the compressed file of your code along with experiments (if relevant) in .tar, .zip, or .tar.gz
format (.rar not allowed): the name of your file has to be YourLastName-YourFirstName.tar
or YourLastName-YourFirstName.zip, or YourLastName-YourFirstName.tar.gz.

Failing to follow the format will result in 5 points off per mistake.

(CS2402 — Fall 2008
Lab assignment S
Graphs
To be turned in on December, 8™ at 11:59pm

Topics:
» Graphs
¢ Minimum Spanning Trees
o Shortest Path

Objectives:
e Become familiar with graphs: building, traversal
e Understand the minimum spanning trees and shortest path problems
¢ Become familiar with practical applications of graphs
e Understand the notion and importance of testing and how to report and analyze results

Description of the problem:

You are given the description of a network: computers (nodes / vertices), connections (edges),
and the cost of each connection (weights). This network is described in terms of a matrix M of
size nxn, where each element M[i,j] of the matrix is an integer that represents the cost of a
connection from computer i to computer j. Let us note that M[i,j] can be different from M{[j.1].
The graph described by this matrix is denoted G.

You have to determine the sub-network that connects all computers at minimum cost. This
second network is denoted G'.

Once you have G and G', when given two computers (nodes / vertices) C1 and C2, you have to
determine the cheapest connection path between C1 and C2 in G, and then in G', and compare the
results.

You are expected to turn in:
1. A report containing:

1. an introduction: describing the topic of this assignment and providing an outline of
the report:

2. a section per problem (1%: building the subnetwork / 2" finding the cheapest
connections), each containing:
1. adescription of your implementation(s) and algorithm(s): in plain english; in

particular, you have to justify/prove that your algorithm does what it is supposed

to do;

2. the pseudo-code of the algorithms (not its code, and it has to be well
commented);

3. the description of the performance of your algorithm;

4. the experiments you run to show that your implementation is sound and its
performance practical.

3. aconclusion: in which you recall what was done, what was learned from doing this
lab, what were the challenges, how they were overcome.

2. Your code containing:
the well-indented, well-documented java code of your algorithm(s);

How to submit:

To whont:

This assignment is to be turned in to both your TA, Jaime Nava, jenava@miners.utep.edu, and
your professor, Martine Ceberio, mceberio{@utep.edu.

Failing to do so will result in 5 points off.

Format of the email:
When submitting,the subject of your email has to be:
[cs2402] lab5: YourLastName YourFirstName.
For instance, when Luis Garcia submits his assignment, the subject of his email will be:
[cs2402] lab5: Garcia Luis.
Failing to do so will result in 5 points off.

Format and name of the submitted files:
The files that you have to attach to your email when submitting are:
1. the file of your report in .doc or .pdf format (.docx not allowed): the name of your file
has to be: YourLastName-Y ourFirstName.doc or YourLastName-YourFirstName.pdf
2. the compressed file of your code along with experiments (if relevant) in .tar, .zip, or
tar.gz format (.rar not allowed): the name of your file has to be YourLastName-
YourFirstName.tar or YourLastName-YourFirstName.zip, or YourLastName-
YourFirstName.tar.gz.
Failing to follow the format will result in 5 points off per mistake.

