
CQI Report
Fundamentals Committee

Fall 2008

Prepared by:
Olac Fuentes (committee chair)
Marine Ceberio
Vladik Kreinovich
Mary Kay Roy
Eric Freudenthal

CS 2401 Review – Fall 2008
Prepared by Olac Fuentes

Course Description:
This is the second course for students majoring in Computer Science. Students will learn about fundamental

computing algorithms, including searching and sorting; elementary abstract data types including linked lists,

stacks, queues and trees; and elementary algorithm analysis.

Knowledge and abilities required before the students enter the course:

Students are assumed to be comfortable programming in Java. Students should be able to code basic arithmetic

expressions, define simple classes, use strings, code loops and conditional statements, write methods, create

objects from classes, invoke methods on an object, perform basic text file input and output, and use arrays.

Learning Outcomes

Level 3 Outcomes: Synthesis and Evaluation

Identify, implement and use:

a. Multi-dimensional arrays.

b. Lists implemented as arrays or linked lists.

c. Stacks.

d. Queues.

e. Binary trees and binary search trees.

f. Simple hashes

Level 2 Outcomes: Application and Analysis

a. Use Big-O notation to express the best-, average- and worst-case behaviors of an algorithm

b. Explain the structure and use of activation records

c. Determine the best, average and worst-case behaviors of an algorithm

d. Assess time and space trade-offs in algorithms.

e. Explain, code, and use quadratic and O(n log n) sorting algorithms

f. Implement recursive algorithms over natural numbers, lists, and trees

g. Define and use classes, subclasses and inheritance.

h. Implement a simple graphical user interface

i. Perform string manipulation and simple parsing

j. Implement and use multidimensional arrays

k. Describe the importance of encapsulation and information hiding

l. Implement applications and simulations of the data structures identified above.

m. Implement simple sequential and binary search algorithms

n. Implement quadratic sorting algorithms

o. Describe memory allocation of integers, real numbers, arrays and objects

Level 1 Outcomes: Knowledge and Comprehension

a. Explain basic and introductory-level notions of a virtual machine

b. Explain the concept of polymorphism

c. Use class browsers and related tools

d. Identify class hierarchies

e. Recognize the standard terms associated with particular data structures e.g. head/tail, push/pop/peek

Instruments
Assessment was done using 3 partial exams, a final exam, and 10 laboratory assignments. The table shows the

mapping from outcomes to assessment instruments and the average grade, normalized to the 0-1 range, obtained

by students in that instrument.

Assessment Mapping Table
Outcome Level Test 1 Test 2 Test 3 Other Final

Exam
Result

Explain basic and

introductory-level notions

of a virtual machine

1 Explained,

assigned as

homework, not

tested

Explain the concept of

polymorphism

1 Q10:6

A: 0.99

 Lab 1

A:0.75

 Met

Use class browsers and

related- tools

1 Lab Assignments

2-10

TA

Assesment:80%

 Met

Identify class hierarchies 1 Lab Assignments

2-10

TA

Assesment:80%

 Met

Recognize the basic terms

associated with particular

data structures e.g.

head/tail, push/pop/peek

1 Q8:8

A: 0.71

Q9:8

A: 0.47

 Q7:10

A: 0.80

Q8:10

A: 0.51

Q9:10

A: 0.55

Met

Use Big-O notation to

express the best-, average-

and worst-case behaviors

of an algorithm

2 Q1:12
A:0.72

Q2:9

A:0.69

 Q1:12

A: 0.89

Q13:10 A:

0.71

Q14:10 A:

0.66

Met

Explain the structure and

use of activation records

2 Explained, not

tested

Determine the best,

average and worst-case

behaviors of an algorithm

2 Q1:12

A:0.72

Q2:9

A:0.69

 Q14:10

A: 0.66

Met

Assess time and space

trade-offs in algorithms.

2 Lab7

A:0.75

Lab 9

A:0.90

 Met

Explain, code, and use

quadratic and O(n log n)

sorting algorithms

2 Q3:8

A:0.99

Q4:8

A:1.00

Lab7

A:0.75

Lab 9

A:0.90

 Met

Implement recursive

algorithms over natural

numbers, lists, and trees

2 Q5:5

A: 0.96

Q6: 8

A: 0.28

Q7:10

A: 0.28

 Lab 2

A:0.81

Lab 3

A:0.85

Lab 4

A:0.88

Lab 5

A:0.80

Lab 6

A:0.90

Q3:8

A: 0.76

Q4:9

A: 0.84

Met

Define and use classes, 2 Lab Assignments Met

subclasses and

inheritance.

2-10

TA

Assesment:75%

Implement a simple

graphical user interface

2

 No covered

Perform string

manipulation and simple

parsing

2 Q8:12

A: 0.32

 Lab 5

A:0.80

Lab 7

A:0.75

Q5:5

A: 0.95

Met

Describe the importance

of encapsulation and

information hiding

2 Lab Assignments

1-10

TA

Assesment:80%

 Met

Implement applications

and simulations of the data

structures identified

above.

2 Labs 1 to 10

A:0.83

 Met

Implement simple

sequential and binary

search algorithms

2

Covered, not

tested

Implement quadratic

sorting algorithms

2 Lab 6

A:0.90

Lab 9

A:0.90

 Met

Describe memory

allocation of integers, real

numbers, arrays and

objects

2 Q12: 8

A: 0.73

 Met

Multi-dimensional arrays. 3 Q2:10

A: 0.80

Q3:10

A: 0.82

Q4: 10

A:0.76

Q9:10

A:0.58

Q11:8

A:0.37

 Lab 1

A:0.75

Lab 3

A:0.85

Q1:12

A: 0.89

Q2:10

A: 0.64

Met

Lists implemented as

arrays or linked lists.

3 Q1:10

A: 0.79

Q2:10

A: 0.76

Q3:12

A: 0.55

Q4:12

A: 0.54

Q5:12

A: 0.56

Q6:10

A: 0.45

Q7:12

A: 0.38

 Lab 6

A:0.90

Lab 7

A:0.75

Q6:10

A: 0.70

Q7:10

A: 0.80

Met

Stacks 3 Q8:8

A:0.75

Q10:20

A:0.36

 Lab 8

A:0.70

Q8:10

A: 0.51

Met

Queues 3 Q9:8

A: 0.47

Q10:12

A: 0.31

 Lab 8

A:0.70

Q9:10

A: 0.55

Met

Binary trees and binary

search trees.

3 Q5: 8

A: 0.92

Q6: 9

A: 0.87

Q7: 9

A: 0.83

Q8: 12

A: 0.73

Q9: 12

A: 0.58

Q10:12

A: 0.20

Q11: 12

A: 0.49

Lab 10

A:0.95

Q10:4

A: 0.79

Q11:10

A: 0.68

Q12:10

A: 0.57

Met

Simple hashes 3 Q:12 8

A: 0.96

 Met

Performance analysis by instructor

Table 1 presents the assessment results for each course outcome. “Met” in the last column indicates that for a

question the mean is 70% or better. Overall, the course was successful in attaining the main educational

outcomes. In particular, most level 3 outcomes were tested multiple times to ensure compliance and were met.

We make following observations and recommendations:

1. Outcome level 1, Explain basic and introductory-level notions of a virtual machine, was explained in class

and was the subject of a homework assignment, but was not tested. This was deemed sufficient since it’s a

level one outcome and the topic will be explained in detail in advanced courses.

2. Outcome level 2, Explain the structure and use of activation records was not tested. The material was

explained in class when recursion was introduced, but not tested. We suggest this outcome be moved to CS3

Data Structures and presented when recursion is covered in more depth.

3. Outcome level 2, Implement simple sequential and binary search algorithms was not tested. The material was

explained and used as an example when big-O notation was introduced, but it was not tested, as the code is

provided in the textbook. The instructor believed that there was little to be gained by having the students just

re-type that code. We recommend the outcome be modified to “Describe and analyze sequential and binary

search algorithms”.

4. Outcome level 2, Implement a simple graphical user interface was described in the lab by the T.A., but not

tested. We recommend user graphical interfaces be required as parts of at least two of the labs in the course.

Comments by Committee:

Strengths of course:

The majority of learning outcomes was met.

Labs: varied topics at the right level of depth

Exams: cover outcomes at appropriate level of depth. Interesting types of questions: Given a complexity

in big-Oh and parameters, implement an algorithm of the given complexity.

Issues:

Some instructors prefer labs with specific topics, while labs in this course are for the most part lists of

shorter tasks to be implemented. The committee should discuss which approach works best for training

the students (the answer to this question should also involve data about their motivation level, which can

affect the retention of students).

Opportunities for improvement:

Some outcomes not met, as already mentioned in analysis by instructor.

Recommendations for change to course delivery:

Lower failing grades are desirable.

Recommendations for changes to program:

Move Outcome level 2, Explain the structure and use of activation records to CS3, as suggested by

instructor.

Replace Outcome level 2 Implement simple sequential and binary search algorithms by Describe and

analyze sequential and binary search algorithms, as suggested by instructor, since the code is presented

in most textbooks and is also readily available online.

Assessment Instruments

CS2401
Fall 2008

Exam 1

1. (8 points) The following method was written with poor programming style and documentation Rewrite it to

fix these problems.

 public static int k(int kgb){

 // This method is recursive

 if (n > 0) // comparing n and 0

return 0; //

 return n*k(n-1);

 }

2. (10 points) Write a method that receives a 1D array of integers A and an integer n and counts and returns the

number of times n appears in A.

3. (10 points) Consider the following method:

public static int [] cs(int [] A){

 int [] C = new int[A.length];

 C[0] = A[0];

 for(int i=1; i<A.length;i++)

 C[i] = C[i-1]+ A[i];

 return C;

 }

Trace the execution of cs(A), where A = {2,4,5,7,8}.

4. (10 points) Write a method that receives a 2D array of integers A and an integer n and returns the row where

n first appears in A, or -1 if n does not appear in n. For example, if A= {{1,2}, {4,5}, {5,8}}, and n = 5,

your method should return 1, and if A= {{1,2}, {4,5}, {5,8}}, and n = 9, your method should return -1.

5. (5 points) When is a recursive solution to a problem preferable to an iterative solution?

6. (8 points) Consider the following method:

public static void s(String S, int n) {

 if (n>0){

s(S+"0",n-1);

s(S+"1",n-1);

 }

 else

 System.out.println(S);

 }

 Trace the execution of s("",3)

7. (10 points) Write a recursive method that computes the sum 1/n + 1/(n-1) + 1/(n-2) + ... + ½ + 1/1.

8. (12 points) Write a method that receives a String S and returns the lower case vowel that appears in S with

the highest frequency. For example, if S = "El Paso, Texas", your program should return 'a'. You may break

ties arbitrarily.

9. (10 points) Write a recursive method that prints the contents of a 1D array in reverse.

10. (6 points) Explain the following concepts:

a. Inheritance

b. Polymorphism

c. Method overriding

11. (8 points) What is the output of the following code fragment?

int [][] x = {{1,2,3},{4,5,6},{7,8,9}};

for (int i=0;i<x.length;i++)

 x[i] = x[0];

printArray(x);

x[2][0]= -1;

printArray(x);

12. (8 points) What is the output of the following code fragment?

void p(int [] k){

 int [] m = k;

 m[1] = -10;

}

.

.

.

int [] x ={1,2,3};

p(x);

printArray(x);

CS2401
Fall 2008

Exam 2

1. (10 points) What will be the output of the following code fragment:

 Node x = null;

 for (i=0;i<50;i=i+10)

 Node x = new Node(i,x);

 printList(x);

 Node y= x.link;

 x = y.link;

 printList(x);

 printList(y);

 Node z = new Node(100,y);

 printList(z);

 y =null;

 printList(z);

 while (z.link!=null)

 z=z.link;

 printList(z);

2. (10 points) Consider the method c written below. Show a box trace of the execution of c(x,0), where x points

to a reference-based list that contains a sequence of nodes with values [2,-4,8,10,-15,-8]

 void c(cNode x, int k){

 if (x!=null){

 if (x.info<k)

x.info =k;

 c(x.link,k);

 }

 }

3. (12 points) Write the method that takes as parameters h, a reference to the head of a linked list of integers, and

n, an integer, and prints the first n elements of the list, or the whole list if it has less than n elements. Use only

node operations to access the list.

4. (12 points) Write a method that receives a reference to the head of a list of characters and returns a String

containing the same characters as the list in the same order.

5. (12 points) Write an iterative and a recursive method to compute and return the length of a linked list.

6. (10 points) Write a method to print the contents of a circular linked list.

7. (12 points) Write the method that concatenates two doubly-linked lists.

8. (8 points) Consider a stack implemented as a reference-based list. Show the configuration of the list after each

push or pop operation.

 Stack s = new Stack();

 for (int i=0;i<5;i++){

 s.push(i);

 s.push(i+10);

 }

 for (int i=0;i<5;i++)

j = s.pop();

9. (10 points) Consider an implementation of a queue that uses an array of size 5. Show the array and the values

of front, back, and count after each enqueue or dequeue operation.

Queue q = new Queue();

for (int i=1;i<6;i++)

 q.enqueue(i);

j = q.dequeue();

k = q.dequeue();

m = q.dequeue();

q.enqueue(j);

q.enqueue(k);

q.enqueue(m);

10. Write two versions of the method inQueue(n) that determines if element n is in the queue Your methods

should be written as follows:

a. (10 points) As an additional method inside the queueList class that implements queues with circular

reference-based lists (recall that they keep a reference to the last element of the queue).

b. (10 points) As a method outside the class that defines queues, that is, accessing the queue only

through the ADT queue operations.

11. Write two versions of the method inStack(n) that determines if element n is in the stack Your methods should

be written as follows:

a. (10 points) As an additional method inside the stackArray class that implements stacks with arrays.

b. (10 points) As a method outside the class that defines stacks, that is, accessing the stack only through

the ADT stack operations.

CS2401
Fall 2008

Exam 3

1. (12 points) In terms of n, what are the big “O” running times of the following code fragments? Explain your

answers.

c. void m(int [] A, int n){

 System.out.println(A[n]);

 }

d. void m(int [] A, int n){

int temp =0;

 while (n>=temp){

 for(int i=0;i<temp;i++)

System.out.println(A[i]);

 temp++

 }

 }

e. void m(int [] A, int n{

if(n>0){

 System.out.println(A[n]);

m(A,n/2);

}

 }

f. void m(int [] A, int n{

if(n>0){

 System.out.println(A[n]);

m(A,n-1);

}

 }

2. (9 points) Write methods that receive an array A and an integer n and take the specified big-O running

times.

g. O(n
3
)

h. O(2
n
)

i. O(n log n)

3. (8 points) Trace the execution of bubble sort with the following input: 15,30,10,8, 35,31,22,40.

3. (8 points) Trace the execution of mergersort with the following input: 15,30,10,8, 35,31,22,40.

4. (8 points) Show the configuration of an initially empty binary Search Tree after inserting the sequence of

elements : 15,30,10,8, 35,31,22,40.

5. (9 points) Write the outputs produced by a) preorder, b) inorder, and c) postorder traversals using the tree

from question 5 as input.

6. (9 points) Show the tree from the question 5 after deleting the sequence of elements 30, 31, and 15. Draw the

tree after each deletion.

7. (12 points) Write a method that receives a binary tree T and prints the contents of all the nodes in T that have

exactly on child.

8. (12 points) Write a method that receives a binary search tree T and an integer k and prints the level where k is

found in T or -1 if k is not in T (recall that the root has level 0, the children of the root have level 1, and so

on).

9. (12 points) Write a method that receives a binary tree T and prints the value of the smallest element in T. You

may assume that T is not empty.

10. (12 points) Write a method that receives a binary search tree T and prints the value of the smallest element in

T. You may assume that T is not empty. Make your method as efficient as possible.

11. (8 points) Consider a hash table that resolves collisions by chaining and uses the hash function h(x) = x % 5.

What is the configuration of the table after inserting elements with keys: 15, 30, 10, 8, 35, 31, 22, and 40, in

that order?

CS2401 Fall 2008

Lab 1
Due September 5, 2008, 5:00 p.m.

Your first lab consists of writing the following methods that work on 1D arrays:

1. Two methods to print the contents of arrays. The first method should work for arrays of type

double and the second should work for integers. Make sure your methods have the same

name (this is an instance of method overloading, a very useful feature of Java.)

2. Two methods to allow users to input arrays from the keyboard. Again, use overloading to

make the first method work with doubles and the second with integers.

3. Two methods to allow users to fill-up arrays with uniformly distributed random numbers.

Your methods should receive the minimum and maximum values and fill the arrays with

randomly-chosen values that are greater or equal to the minimum and less or equal to the

maximum. Use overloading as before.

4. A method that receives an integer and prints, in English, the sequence of digits in that

integer. Your method must use arrays of strings to store the names of the digits. A sample run

of your method would be as follows:

Enter an integer
15644

The integer 15664 contains the following digits:

one five six four four

5. A method that receives an array of integers in the 0 to 9 range and determines if the array

contains each of the single digits (0 to 9) at least once. For example if your method receives

the array A={0, 3, 4, 5, 0, 1, 2, 3} it should return false and if it receives the array A={1, 4, 6,

2, 3, 4, 5, 7, 9, 8, 0, 5, 1} it should return true. (Hint: use an array of Booleans)

6. A main method that illustrates the correct behavior of the methods in numbers 1 to 5.

7. (Extra Credit) Repeat problem 4, but now, instead of printing to the screen the sequence of

digits, have the computer read them aloud to the user. Consult Java sound resources on the

web for information about how to do this - it’s cool and it’s not too hard!

Here’s a possible sample output of your main method:

Testing Method 1 a

{1.1, 2.2, 3.3, 4.4, 5.5}

Testing Method 1 b
{1, 2, 3, 4, 5}

Testing Method 2 a
Enter size of array of doubles to be input:

>> 4
Enter 4 numbers

>> 4 5 6 7
{4.0, 5.0, 6.0, 7.0}

Testing Method 2 b
Enter size of array of integers to be input:

>> 8
Enter 8 integers

>> 45 89 7 10 2 36 6444 5

{45, 89, 7, 10, 2, 36, 6444, 5}

Testing Method 3 a
Enter size of array of doubles to be randomly generated:

>> 4
Enter minimum and maximum values:

>> 0 100

{9.559843287214331, 21.041310595035988, 84.60780683107396, 62.17104822610812}

Testing Method 3 b
Enter size of array of integers to be randomly generated:

>> 10

Enter minimum and maximum values:
>>0 100

{39, 96, 60, 68, 17, 47, 62, 15, 35, 12}

Testing Method 4

Enter integer to be broken into digits:
>> 478966

The integer 478966 contains the following digits:
four seven eight nine six six

Testing Method 5

Enter size of array of integers to be tested for the presence of every digit:

>> 20
Enter 0 to enter array manually, 1 to generate randomly:

>> 1
The array

{9, 5, 0, 6, 8, 8, 0, 5, 4, 8, 7, 9, 1, 0, 7, 3, 6, 4, 4, 7}

Does not contain every digit from zero to nine

CS2401 Fall 2008

Lab 2
Due September 12, 2008, 5:00 p.m.

There are a number of problems, known collectively as “random walk” problems, which have

been of longstanding interest to the mathematical community. Some of these problems, although

extremely difficult to solve analytically, can be solved by 2401 students (hopefully!) using

simulation. One of them is as follows:

A cockroach is placed on a given square in the middle of a tile floor in a rectangular floor of size

n by m tiles surrounded by walls. The cockroach wanders randomly from tile to tile throughout

the room. Assuming that he may move with equal probability to any of the neighboring four tiles

(North, South, East, West) with equal probability, how many moves will it take him to touch

every tile on the floor at least once? If the cockroach bumps into a wall, its position is not

changed, but the move should be counted.

Your lab consists of implementing a simulation of this problem. Your program must prompt the

user to enter the number of rows and columns in the tile floor and the initial position of the

cockroach; it will then simulate the cockroach’s random walk and terminate when every tile has

been visited at least once. Your program must then output the initial parameters, the number of

moves taken, and a 2-D array showing the number of times each tile was visited. Also, write

methods to make sure that the sum of the elements in your array is equal to the number of moves

the cockroach made and that the minimum element in your array is 1 (why?).

A sample output of your program would look follows:

Enter number of rows: 5

Enter number of columns: 8

Enter starting row: 4

Enter starting column: 2

It took the cockroach 278 moves to visit every tile

The number of times it visited each tile is as follows:

Ï 8 9 6 6 10 13 14 15
Ï 6 4 6 6 7 13 16 8
Ï 4 2 3 4 2 5 13 7
Ï 4 4 1 1 4 8 14 18
Ï 1 1 1 1 2 6 12 13
The sum of the elements in the array is: 278

The minimum of the elements in the array is: 1

CS2401 Fall 2008

Lab 3
Due September 19, 2008, 5:00 p.m.

1. Write a recursive method called print_nums that receives as parameter an integer n. The method will

print to the screen 1 in the first line, 1 2 in the second line, and so on until it prints all the numbers

from 1 to n in a line. Your method should call another recursive method to print each line. For

example. If n =4, the method should print to the screen:

 1

 1 2

 1 2 3

 1 2 3 4

2. Write a recursive method to reverse the contents of a 1-dimensional array of integers.

3. Write a recursive method to determine if a 1-dimensional array of integers is sorted in ascending

order.

4. Solve programming exercise 1 from page 925 in the textbook.

5. Solve programming exercise 4 from page 926 in the textbook.

CS2401 Fall 2008

Lab 4
Due September 26, 2008, 5:00 p.m.

1. The subset sum problem is an important problem in computer science. Given a set of positive integers S and

a target integer n, the goal is to find if there is a subset of S whose sum is n. For example, if S = {1, 3, 6, 7}

and n = 13, the answer is true, because the sum of {6, 7} adds up to 13, but if n =5, the answer is false

because there is no subset of S that adds up to 5. Write a program that prompts the user to enter a set of

positive integers S and an integer n and uses a recursive method to determine if there is a subset of S whose

sum is n. Notice that you don’t need to show the set of integers adding up to n, you just need to determine

if it exists.

2. Do exercise 15, from pages 928-930 in the textbook. To solve this problem, we strongly suggest that you

look at the example on pages 916 to 921.

CS2401 Fall 2008

Lab 5
Due October 7, 2008, 5:00 p.m.

1. Implement the kth-smallest algorithm discussed in class and test is using randomly generated arrays of

integers. Also, for every recursive call, print the contents of the array being processed and the value of k.

2. Write a method that receives a string S and returns true if S is a palindrome.

3. Some characters of the Spanish language do not exist in English; these are the accented vowels

(á,é,í,ó,ú), and “eñe” (ñ). These characters can create problems for some English-only systems. To

avoid these problems, one can replace the accented vowels by their un-accented counterparts and ñ

by n. Write a method that performs this replacement. For example, if your method receives the

String “Juárez”, it should return “Juarez”, and if it receives “Cañón”, it should return “Canon”.

CS2401 Fall 2008

Lab 6
Due October 15, 2008

Your lab assignment consists of implementing two algorithms (described below) to sort lists of integers

implemented as a reference-based lists. Your program must prompt the user to select the length of the list,

whether the elements will be entered manually or generated randomly, and the choice of algorithm to use. As the

elements are entered they must be stored in a reference-based list (you may consider storing them in the inverse

order in which they are entered). After that, the selected method must be called to sort the list, and finally you

should display the resulting sorted list and the time it took to sort the list.

Algorithm A starts with the original list of elements and an initially empty sorted list, and repeatedly finds the

node that contains the element with the maximum value in the original list and moves it to the sorted list, until the

original list is empty

 SortListA(L)

 SortedList = empty list

 while L is not empty

 x = node with maximum element in L

 remove x from L

 add x at the beginning of SortedList;

 return SortedList

Algorithm B, takes the first element of the list as pivot, and splits the list into three lists; the first list contains the

elements that are smaller than the pivot, the second contains the pivot itself, and the third contains the elements

that are greater or equal to the pivot. Then the algorithm recursively sorts the first and the third lists, and finally it

concatenates the first list, now sorted, the list that contains the pivot, and the third list, also sorted.

SortListB(L)

 If length(L) >1

 let f be the first node in L

 remove f from L

 split L into three lists as follows:

 L1 that contains all the elements that smaller that the element in f

 L2 that contains (only) f

 L3 that contains the elements of L that are greater or equal to the element in f

 L1 = SortListB(L1);

 L3 = SortListB(L3)

 L = concatenate(L1,L2,L3);

 return L

Extra Credit: Modify Algorithm B to implement the kth-smallest algorithm described in class.

CS 2401 Fall 2008

Lab 7
Reference-based Lists and Strings

Due Friday, October 24

Instructions

Your task is to implement the class LString, which uses reference-based lists of characters to implement standard

operations on strings. An LString will be implemented using a singly-linked list, where each node contains a

character.

Each node on the list is defined by the following class:

public class cNode{
 public char info;
 public cNode link;

 public cNode(char c){
 info = c;
 link = null;
 }

 public cNode(char c, cNode x){
 info = c;
 link = x;
 }
}

An LString, which consists of a list of cNodes, is defined as follows:

public class LString{
 private cNode head;

 public LString(String S){
 head = buildList(S);
 }

 private cNode buildList(String S){ // Builds a list of nodes containing the characters of S
 if (S.length()==0)
 return null;
 else {
 cNode x = new cNode(S.charAt(0),buildList(S.substring(1,S.length())));
 return x;
 }
 }
}

You should extend the LString class to include the following operations:

1. void setCharAt(int i,char c) // Sets character at position i in the string to ch . It generates an

 // exception if i is greater than the length of the string minus one

2. void insertCharAt(int i,char c) // Insert character c at position i. It generates an

 // exception if i is greater than the length of the string

3. void deleteCharAt (int i)// Deletes character at position i. It generates an

 // exception if i is greater than the length of the string minus one

4. void print() // Prints the string

5. LString copy() // Builds a copy of the string

6. int length() // See page 620

7. char charAt(int i) // See page 620

8. int indexOf(char ch) // See page 620

9. int compareTo(LString L) // See page 620

10. int compareTo(String S) // See page 620

11. void toUpperCase() // Replaces each lowercase letter by the equivalent uppercase letter

12. void toLowerCase()// Replaces each uppercase letter by the equivalent lowercase letter

To test your work, implement a main method that illustrates the behavior of each of your methods.

For example, the code fragment:

LString S = new LString("UTEP Miners");
S.print();
System.out.println(S.length());
System.out.println(S.charAt(5));
System.out.println(S.indexOf("n"));
System.out.println(S.compareTo(S));

should output exactly the same results as the following code fragment:

String U = "UTEP Miners";
System.out.print(U);
System.out.println(U.length());
System.out.println(U.charAt(5));
System.out.println(U.indexOf("n"));
System.out.println(U.compareTo(U));

CS2401 Fall 2008

Lab 8
Due November 5, 2008, 5:00 p.m.

1. The subset sum problem is an important problem in computer science. Given a set of positive integers S

and a target integer n, the goal is to find if there is a subset of S whose sum is n. For example, if S = {1, 3,

6, 7} and n = 13, the answer is true, because the sum of {6, 7}, which is a subset of S, is 13, but if n =5,

the answer is false because there is no subset of S that adds up to 5. Write a program that prompts the

user to enter a set of positive integers S and an integer n and uses a stack to determine if there is a

subset of S whose sum is n and prints the subset is it exists.

2. Exercise 19, from page 1233 in the textbook.

CS2401
Fall 2008

Lab 9
Due Friday, November 14, 2008.

Your lab assignment consists of implementing the following algorithms to sort reference-based lists of

integers:

1. Selection sort

2. Bubble sort

3. Mergesort

4. Quicksort

Your program must prompt the user to select the length of the list, whether the elements will be entered

manually or generated randomly, the choice of algorithm he/she wants to use, and whether the sorted list

must be printed. As the elements are entered, they must be stored in a reference-based list (you may

consider storing them in the inverse order in which they are entered). After that, the selected method

must be called to sort the list, and finally, you must display the time it took to sort the list, the number of

comparisons performed by the algorithm, and, if requested, the resulting sorted list,.

CS2401 Fall 2008

Lab 10
Due December 4, 2008

1. Implement a method to build a binary search tree (BST) of integers. Your method must allow building a tree

with randomly generated elements or with elements entered by the user from the keyboard. Make sure that all

the elements in your tree are unique; if a number that is already in the tree is entered, it should be ignored.

2. Implement a recursive method to print the nodes in your tree in ascending order.

3. Implement a recursive method to print the nodes in your tree in descending order.

4. Implement a method to print the nodes in your tree ordered by level, starting with the root. Hint: use a queue.

5. Implement a method that receives an integer n and displays the contents of the parent and the children of the

node that contains n, if n is in the tree.

6. Implement methods to:

a. Print the smallest element in the BST

b. Print the largest element in the BST

c. Compute the sum of all the nodes in the BST

d. Count the number of nodes in the BST

e. Count the number of leaves in the BST

f. Count the number of nodes in the BST that have only one child.

g. Count the number of nodes in the BST that have two children.

(If implemented correctly, the sum of the results of e), f), and g) should be equal to the result of d).

CS2402: Data Structures and Algorithms

Course Description:

The definition and implementation of abstract data types; representation of data using

sets, lists, trees, and graphs; the design and implementation of traversal, search, and sort

algorithms; and the space and time analysis of algorithms.

Learning Outcomes

Note: my letter grades are as follows:

 A is 85% and above;

 B is 75% and above;

 C is 65% and above;

 D is 55% and above;

 F is below 55%.

Level 3: Synthesis and Evaluation

A. Specify data structures and operations associated with abstract data types

 In each lab assignment

 MT3 Ex. 2 (70%)

 Final Part II (67%), Part III.8 (75%)

Comment: Met.

B. Define the signature and pre- and post-conditions for operations of an

abstract data type

 In each lab assignment, especially lab 4 (79%).

 Mostly in Quiz 2 Q1 (64%),

But also in all questions expecting algorithms:

 Quiz 3 Q3 (67%), Q4 (75%), Quiz 4 Q1 (75%), Q2 (50%), Quiz 5 Q2 (56%)

 MT1 Ex. 5 (40%)

 MT2 Ex. 1 (65%)

 MT3 Ex. 2 (70%), Ex. 3 (75%)

 Final Ex. 5 (80%), Ex. 9 (62%)

Comment: Met. The grades for MT1 were low but lower grades are usually observed

at the first MT. Similarly, students’ performance in quizzes is in general lower

(absences, lack of timely work on class topics).

C. Given a scenario, describe the abstract data types that could be created

 In each lab assignment

 MT3 Ex. 2 (70%)

 Final Part II.5 (80%), Part III.8 (75%)

Comment: Met.

D. Implement binary and binary search trees, using pre-, post-, or in-order

traversals as appropriate for a given situation

 Lab 4 (79%)

 Quiz 4 (70%)

 Quiz 5 Q1 (88%)

 MT1 Ex. 5 (40%)

 MT3 Ex. 2 (70%)

 Final Part II.5 (80%)

Comment: Met. Same comment as for B for MT1.

E. Judge which data model (list, tree, graph, or set) is appropriate for solving a

problem

 Labs 2 (75%), 3(77%), 4 (79%), and 5 (76%)

 MT2 Ex. 1 (30%)

 MT3 Ex. 2 (70%)

 Final Part III.8 (75%)

Comment: Met. Although students’ performance was well below reasonable at MT2,

they significantly improved by the end of the semester (see averages for MT3 and

Final).

F. Justify the choice of a data structure to solve a problem based on issues such

as time, and space, of the data structure

 Mainly in Labs 2 (75%), 3 (77%), and 5 (76%)

Comment: Met.

G. Judge which implementations are best suited for an application that requires

a list data model: lists, circular lists, circular queue, or generalized list

 Lab 3 (77%)

Comment: Met.

H. Judge whether an array or linked implementation is best suited for an

application that requires a data model

 Labs 3 (77%) and 5 (76%)

 MT3 Ex. 2 (70%)

Comment: Met.

I. Judge which graph representations (adjacency list, adjacency matrix, edge

list) are appropriate for solving a problem

 Lab 5 (76%)

 Final Part IV (65%)

Comment: Met.

J. Develop algorithms that are based on depth- and breadth-first traversals of

general trees, binary trees, and graphs

 Labs 2 (75%) and 4 (79%)

 Quiz 3 Q4 (75%)

 Quiz 4 (70%)

 MT1 Ex. 5 (40%)

 MT2 Ex. 1 (65%)

 Final Part III.8 (75%), Part III.9.4 (50%)

Comment: Met. Same comment as for B for MT1. The lower performance at the Final

is due to the lack of time to complete the exam. Many students did not answer Part

III.9.4.

K. Judge which sort algorithm (insertion, selection, mergesort, heapsort,

quicksort, radix) is appropriate for solving a problem

 Lab 1 (78%)

 Many non-graded in-class exercises

Comment: Met.

L. Judge which search algorithm and data structure is appropriate for solving a

problem

 Lab 4 (79%)

 MT2 Ex. 4 (86%)

Comment: Met.

M. Implement a recursive solution to a problem

 Labs 1 (78%) and 2 (75%)

 MT2 Ex. 1.2 (40%)

 Final Part IV.9.4 (50%)

Comment: Partially met. Students still have hard time using recursion when it has to

be their own “creation”. They did much better in labs than in exams though, which

indicates that, given more time, they tend to overcome their problems.

Level 2: Application and Analysis

A. Categorize algorithms based on programming strategy, i.e., divide-and-

conquer, greedy, backtracking, and dynamic programming strategies

 Labs 2 (75%) and 5 (76%)

Comment: Met.

B. Analyze iterative and recursive algorithms with respect to time and space

 Lab 1 (78%)

 Quiz 2 Q3 (90%)

 Quiz 5 Q1 (88%)

 MT1 (60%)

 MT2 Ex. 1.2 (50%)

 MT3 Ex. 3.4 (75%)

 Final Part I (65%), Part III.7 (72%)

Comment: Met.

C. Describe the applications for a dictionary/map ADT, e.g., the application of a

symbol table

 Covered in class with exercises, not in any graded material

D. Give representations for and operations on a binary tree, general tree,

threaded tree, heap, binary search tree, B-tree, quadtree, and graphs

 Lab 4 (79%)

 Quiz 2 Q3 (90%)

 Quiz 3 Q4 (75%)

 Quiz 4 (70%)

 Quiz 5 Q2 (65%), Q4 (75%)

 MT1 Ex. 5.1 (85%)

 MT2 Ex. 4 (86%)

 MT3 (75%)

 Final Part III (70%)

Comment: Met.

E. Determine the order for a B-tree based on memory issues

 Covered in non-graded homework.

F. Apply graph algorithms for determining shortest paths (Dijkstra’ s and

Floyd’s algorithms), minimal spanning tree (Prim’s and Kruskal’s

algorithms), transitive closure (Floyd’s algorithm), and topological sort

 Lab 5 (76%)

 Final Part IV (65%)

Comment: Met. But there is room for improvement.

G. Select an appropriate sorting algorithm for a given situation and defend the

selection

 Lab 1 (78%)

 Not covered in exams but extensively studied in class

Comment: Met.

H. Explain differences and similarities among approaches for resolving

collisions in hash tables, e.g., linear probing, quadratic probing, double

hashing, rehashing, chaining

 MT2 Ex. 3 (79%)

Comment: Met.

I. Apply design methods and other problem-solving strategies. Examples might

include (but are not limited to) functional decomposition, design patterns,

top-down design, abstraction, CRC

 Lab 2 (75%)

 MT2 Ex. 1 (40%)

Comment: Partially met. This was not very much emphasized in class, which can

explain the lower performance of students on related questions.

Level 1: Knowledge and Comprehension

Level 1’s outcomes are those in which the student has been exposed to the terms and

concepts at a basic level and can supply basic definitions. The material has been

presented only at a superficial level. On successful completion of this course, students

will be able to:

A. Describe the characteristics of static, stack, and heap allocation

 Covered in class, not covered in any graded material.

B. Explain issues related to disk read/write time

 Covered in class, not covered in any graded material

C. Define strategies for balancing a binary search tree

 Quiz2 ex. 3 (90%)

 Quiz 5 ex. 1 (88%), ex. 2 (50%), ex. 4 (65%)

Comment: Met.

D. Define the algorithms for implementing B-tree operations

 Assigned as a non-graded homework.

E. Define the procedure for conducting an external sort

 Covered in class, partially covered in lab (Lab1 on sorting algorithms – 78%).

 Comment: Met.

Recommended laboratory assignments:

The following list represents a set of suggested assignments for this course. It is not

intended to be comprehensive and may be modified at the instructor’s discretion.

1. Implement a discrete simulation to model queuing systems

 Lab 3: discrete event simulation of a drive-through.

 Result: 77% average

2. Write a parser that stores the results in a data structure, allowing the user to

query the structure

 Lab 3 requires analyzing data stored from past simulations.

 Lab 4 on genealogical trees required students to parse a “family” file and

build corresponding trees that were to be queried afterwards.

 Results: 77% (lab3); 79% (lab4).

3. Write a program in which the central data structure is a graph

 Lab 5 required students to use graphs to model computer networks.

 Result: 76%.

4. Write a program that collects empirical data (e.g., number of collisions in a

hash table or execution time for a sort algorithm) and analyze the results

from the program

 Lab 1 on sorting algorithms included a theoretical as well as an experimental

analysis on sorting algorithms’ complexity.

 Lab 2 on Hitori required students to experimentally analyze the time

complexity of solving algorithms.

 Lab 3 on simulation required students to collect data in order to determine the

best setting/schedule of tellers at the drive-through.

 Results: 78% (lab1), 75% (lab2), 77% (lab3).

Comments by Instructor:

All required material was covered, although not necessarily included in graded

assignments (e.g., B-trees, static, stack, and heap allocation).

Overall, by looking at the grades, and from discussions with the TA and Peer-Leaders, it

appears that students have difficulties in:

 Topics that are abstract and /or theoretical; e.g., complexity (time, space, ...)

 Implementation: although not particularly reflected on the grades, but reported

from TA, and also shown on all exams containing algorithms to trace, students

still have troubles designing and understanding simple pseudo-code for instance.

During Fall 08 we put a special emphasis on writing pseudo-code and developing

algorithms (included in many exams and quizzes). We also asked students to turn

in pseudo-code of their labs prior to their final submission of their code in order to

force them to practice.

As reported from labs,

 Students still struggle with programming in java.

 Although we insisted on it even more than usual over the whole semester (since it

was a conclusion of the previous assessment report), students still struggle with

testing: they do not understand why it is so crucial and have troubles designing

sound testing strategies. They do not value this stage of their labs, which is

affecting their grades.

 They also lack writing skills. This semester, we made sure to always provide a

detailed outline of the expected reports (for each lab). Nevertheless, most of them

do not value or understand the importance of being able to clearly communicate

their work and results, and turned in very poorly written and incomplete reports.

Actions to take:

1. Include B-trees in graded assignments, and more generally grade systematically

all items of the outcomes (in particular level 1 outcomes).

2. Put more emphasis on designing recursive solutions.

3. Reserve more time for covering design methods and other problem-solving

strategies, aside from labs.

4. Provide extra programming and testing tutorials to compensate with the students’

programming weaknesses. In particular, tutorials could be provided in labs on

simple concepts, or we could make use of PLTL sessions to review the unclear

points of java implementation.

Comments by Committee:

Strengths of course:

 The majority of outcomes was met.

 Instruments test outcomes at the appropriate level.

 Emphasis on describing work done by means of a report is a strong point of lab

assignments.

Opportunities for improvement:

Issues:

 Limited coverage of topics in graphs, in particular single-source shortest paths and

topological sorting.

 Lack of separate assessment of understanding of specific graph algorithms.

 There was no redundancy in assessment, as graphs were only tested in final exam.

Possible approaches to address issues:

Include questions about graphs in third partial exam, as well as final.

Arrange to spend more time on graph algorithms – this may be difficult, as course covers

a large amount of material.

Recommendations for change to course delivery:

The amount of guidance given for labs and specially lab reports could be progressively

reduced as the semester progresses to encourage more initiative from students.

Recommendations for changes to program:

Outcomes, in particular those at level 3, are somewhat vague, thus it is hard to map

instruments to them. It is suggested that the committee work on modifying them to

simultaneously align better with ABET requirements and ease assessment.

The amount of material is excessive for a one-semester course. We suggest a few non-

essential topics be eliminated, including: threaded trees, quadtrees, and edge list

representations of graphs.

Assessment Instruments

