
Computational Methods for Investment
Portfolio: the Use of Fuzzy Measures and
Constraint Programming for Risk Management

Tanja Magoč1, François Modave1, Martine Ceberio1, and Vladik Kreinovich1

University of Texas at El Paso
Computer Science Department
500 West University Avenue
El Paso, Texas 79968-0518
tmagoc@miners.utep.edu, fmodave@utep.edu, mceberio@utep.edu,

vladik@utep.edu

Summary. Computational intelligence techniques are very useful tools for solving
problems that involve understanding, modeling, and analysis of large data sets. One
of the numerous fields where computational intelligence has found an extremely
important role is finance. More precisely, optimization issues of one’s financial in-
vestments, to guarantee a given return, at a minimal risk, have been solved using
intelligent techniques such as genetic algorithm, rule-based expert system, neural
network, and support-vector machine. Even though these methods provide good
and usually fast approximation of the best investment strategy, they suffer some
common drawbacks including the neglect of the dependence among among criteria
characterizing investment assets (i.e. return, risk, etc.), and the assumption that all
available data are precise and certain. To face these weaknesses, we propose a novel
approach involving utility-based multi-criteria decision making setting and fuzzy
integration over intervals.

1 Introduction

Given the pervasive nature of computer science, virtually all areas have had to
deal with enormous amounts of data. These data alone do not provide much
information if they cannot be analyzed, understood, and used to extend knowl-
edge. The strength of computational intelligence is to give a wide variety of
techniques that can be used to process, model and understand these datasets.
One of the fields where computational intelligence has been extremely useful
is finance. To simplify, we can consider two types of problems of interest for
the computational intelligence community: pricing and portfolio management.
The former deals with how to assign a price to a derivative instrument in such
a way that arbitrage is not necessary, whereas the latter deals with the op-
timization issues of one’s financial investments, to guarantee a given return,

2 Magoč et al.

at a minimal risk. Pricing theory is tackled mostly from a stochastic perspec-
tive, using models such as Black-Scholes [16]. On the other hand, portfolio
management is a natural area of application for computational intelligence.
The problem we are interested in is the selection of optimal portfolio–a distri-
bution of wealth over several investment assets in order to diversify risk and
obtain a maximal return for the given acceptable level of risk. Typically, the
higher the value of the expected return, the higher the value of risk associated
with the asset. Besides the return and the risk, other factors, such as time to
maturity and transaction cost, influence the decisions of how much money to
invest in each asset under the consideration.

Depending on the need of the investor, different goals could be sought. Two
most commonly considered problems in portfolio selection are maximization
of wealth and minimization of risk to acquire a required level of wealth.

Various investment strategies have been examined to identify an optimal
portfolio in different settings including simple return-based strategies that do
not consider other characteristics of assets, the strategies that use stochastic
processes to model the behavior of assets and portfolios, and strategies that in-
volve intelligent systems. The aim of this chapter is two-fold. First, we present
an extensive selection of computational intelligence techniques such as genetic
algorithms, neural networks, supports vector machines, and expert-based sys-
tems to select optimal portfolio management strategies. Then, we propose
a novel approach based on utility-based multi-criteria decision making set-
ting and fuzzy integration over intervals, as a natural framework for portfolio
management.

2 Mathematical background

As we have mentioned in the Introduction, the two most commonly considered
problems in portfolio selection are maximization of wealth and minimization
of risk to acquire a required level of wealth.

The simplest way of representing these problems is as an optimization
problem subject to constraints, which maximizes or minimizes a simple ob-
jective function

maximize (or minimize)
m∑

i=1

wixi, (1)

subject to constraints such as

wi ≥ 0 ∀i ∈ {1, 2, . . . , m} (2)

m∑

i=1

wiri ≤ risk (3)

m∑

i=1

wiRi ≥ return (4)

Computational Methods in Finance 3

m∑

i=1

wi = 1 (5)

where xi is either return (in maximization problems) or risk (in minimization
problems), m is the number of investment assets, wi is the proportion of
wealth invested in the asset i, Ri is the return rate of the asset i, ri is the
risk of the asset i, return is required level of return, and risk is the level
of risk acceptable by the investor. As presented above, selecting the optimal
portfolio seems to be a straightforward linear programming problem. However,
this representation is just the simplest problem that we can face when looking
for the optimal portfolio. In general, many more constraints are imposed on
the solution. Moreover, the objective function and the constraints are usually
much more complex if more information, such as transaction cost, time period,
preferable portfolio structure, relationships between characteristics of assets,
etc., are taken into consideration. A real-life problem of portfolio selection is
most commonly a non-linear optimization problem with constraints that is
usually not (easily) solvable using general constraint solving techniques due
to their deficiencies to find a global optimum.

Regardless of the setting and its complexity, in the portfolio optimization
problem, we aim at finding the vector of weights (i.e. amount of wealth allo-
cated into each asset), w = (w1, w2, . . . , wm), given all the other parameters.
However, the risk and the return of each asset are predicted rather than cer-
tain values, so the uncertainty of the values complicate even more the process
of selecting the optimal portfolio.

3 Genetic algorithms

In this section, we first give a general description of genetic algorithms, and
then explain how these algorithms work in a portfolio management framework.
We also compare how genetic algorithm approaches perform versus other ap-
proaches, e.g., greedy algorithms.

3.1 Theoretical background

A genetic algorithm (GA) is an optimization method (see e.g., [11],[14],[24],[25])
that imitates biological process of natural survival of the fittest individuals in a
population. Each individual is characterized by a sequence of genes, which con-
stitute a chromosome. The fittest individuals are selected for mating. Through
exchange of chromosomal material between selected pairs and through mu-
tations, the new generation is produced. Thus, generating a new population
follows a three-step process: selection, crossover–exchange of genetic material
between two individuals to produce one or more offsprings, and mutation in
genes. Genetic algorithm simulates all three steps of the natural evolution
process.

4 Magoč et al.

A genetic algorithm starts by defining its optimization variables and the
fitness function. Each variable represents a gene, and all genes of an individual
represented a chromosome:

Definition 2.1. (Chromosome) A chromosome representing an individual
i is the vector of all genes of this individual:

chromosomei = [p1, . . . , pN], (6)

where N is the number of genes (variables), and pj ∀j = 1, . . . , N are genes
(i.e. values of the variables) of the individual i.

Since the variables could include qualitative as well as quantitative values
of different ranges, each of them needs to be encoded into a finite set of distinct
values, usually represented using binary digits.

The next step is to define the fitness function used in the algorithm.

Definition 2.2. (Fitness function) The fitness function

f(chromosome) = f(p1, . . . , pN) (7)

represents an optimization criterion that defines the fitness of each individual.

Usually, the fitness is to be maximized, so that the fittest individuals are
selected for the next step. However, the fitness function could be defined as a
cost function in which case the fittest individuals are the ones with the lowest
cost.

After defining the variables and the fitness function, the initial population
is generated either by a random number generator or by encoding values of
variables for specific individuals. Initializing the population ends the prepara-
tion part of the genetic algorithm and denotes the beginning of the iterative
steps. The first of three iterative steps is selection. A proportion of the popula-
tion is selected to proceed to the next step and the remainder of the population
is discarded. Most commonly, the generational gap, that is the percentage of
the population selected to continue process, is 50%, but any other percentage
could be used. The selection process is based on the fitness level of individuals
and could be performed mainly in two different ways. The first method ranks
all individuals based on their fitness level and selects top ranked individuals.
The second method of selection relies on random selection in which a higher
probability of selection is given to fitter individuals.

The selected individuals proceed to the crossover step that chooses two
individuals for mating in order to produce one or two offsprings. The most
commonly used method for mating is the one-point crossover technique that
picks a random point r between the first and the last position in a chromosome,
a point called crossover point, and produces two offsprings in the following
way. The first offspring copies the genes 1 to r from the first parent and

Computational Methods in Finance 5

the genes r + 1 to N from the second parent, while the second offspring is
produced by changing the order of the parents. The crossover using different
parents continues until the number of individuals is increased to the original
size of the population. Note however, that there are some variations in how
to perform the crossover step.

The crossover step is followed by mutation. A proportion of genes is chosen
for mutation. The mutating genes are selected randomly. The selected genes
take random values from the domain of the variable. The mutation process is
very important since it slows down the quick convergence of the population
in a small search area. It also allows the current best solution to jump away
from a local optimum that is not a global optimum. However, it is desired
that the current best individual is not mutated in order to not lose the current
solution, so many GAs apply the elitist strategy to protect the individual with
the highest fitness from being mutated.

Finally, the fitness of each individual in the population is calculated again
and the convergence criterion is checked. Ideally, at the end, all individuals
in the population have the same genes, representing the optimal solution.
However, a genetic algorithm is usually stopped after a predefined number of
iterations, which results in a set of optimal values rather than just a single
solution, a characteristic that suits portfolio selection problems very well.

3.2 Applications to portfolio management

As a computational intelligence technique, GAs have found different appli-
cations in portfolio management. In [18], the authors developed a two-stage
algorithm to allocate wealth among numerous investment assets to reach an
investor’s goal. The first step, first described in [32], uses a GA to select the
highest performing assets among thousands of available assets, while the sec-
ond step utilizes another GA to find an optimal wealth distribution among
chosen assets.

The choice of the assets to proceed to the second stage of the algorithm is
based purely on the return of assets. Each asset is represented as a chromosome
containing four genes. Each of the four genes is a representation of one financial
indicator used as an input variable. The four variables are:

• Return on capital employed: ROCE = profit
shareholder’s equity · 100%.

• Price/Earning Ratio: P/E = profit
earnings per share · 100%.

• Earning per share: EPC = net income
the number of ordinary shares .

• Liquidity ratio: current assets
current liabilities · 100%.

Each financial indicator is rated and takes one of eight values (0-7), where
0 stands for a poor performance of the asset and 7 represents a very good
performance. These values are encoded as binary numbers so that each gene
is a three-digit binary number.

6 Magoč et al.

Next, “fitness” of each asset is determined. To find the fitness of an asset,
all assets are ranked based on the annual price return (APR):

APRn =
ASPn −ASPn−1

ASPn−1
, (8)

where APRn is the annual price return for the year n and ASPn is the annual
stock price for the year N . The assets with high APR are considered good
assets. Thus, all the assets are ranked from 1 to N where the asset with the
highest APR is ranked 1, and the asset with the lowest APR is ranked N . The
asset’s ranking, r, is then mapped into the range 0−7 using the linear mapping
Ractual = 7 · N−r

N−1 , where N is the number of assets. Finally, a fitness function,
which determines the optimization criterion, is designed. The most commonly
used fitness function is the mean square error between the estimated ranking
and next year’s actual ranking:

RMSE =

√√√√ 1
m

m∑

i=1

(Rderived −Ractual)2. (9)

The goal is to minimize the value of RMSE.
After defining the variables and the fitness function, the selection step of

GA is performed. Chromosomes are selected randomly for crossover with a
higher probability for selection being given to chromosomes with a higher fit-
ness. The one-point crossover technique, which is used to combine two parents
to produce two offsprings, picks a position in a chromosome and interchanges
the values of two parents at this position. Finally, a random mutation in each
gene changes 0 to 1 or vice versa with a probability equal to 0.005.

The generation produced by this method is either accepted as a final pop-
ulation or another iteration of selection, crossover, and mutation is performed.
The process stops when one of the following three conditions is satisfied:

• A predefined number of iterations is reached.
• A defined fitness is reached.
• A convergence criterion of the population is reached. In an ideal case, all

the chromosomes of the final generation have the same genes, representing
the optimal solution.

At the end of the first step of two-stage portfolio optimization algorithm,
the assets are ranked based on their return and the best m assets are consid-
ered for investment. The second stage of the algorithm determines the wealth
distribution among these m assets. It takes into consideration the risk as well
as the return with the goal to minimize the risk for the expected level of the
return.

This step of the algorithm is based on yet another genetic algorithm. Before
applying the second GA, the expected return of each asset and the covariance

Computational Methods in Finance 7

between each pair of assets are calculated. The expected return of the asset i
after n time intervals is calculated as

E(Ri) =
n∑

t=1

Rit

n
, (10)

where

Rit =
SCPit − SCPi(t−1)

SCPi(t−1)
(11)

is the return of the asset i for time t and SCPit is the closing price for the
asset i at time t. The covariance between assets i and j is given by

σij =
1
n

n∑
t=1

(Rit − E(Ri)) · (Rjt − E(Rj)). (12)

The algorithm designs chromosomes using the binary representation of
asset’s weight, wi, which is the amount of wealth allocated to the asset i. The
weight of the asset i is normalized by

xi =
wi

m∑
j=1

wj

(13)

to fit into 8-bits allocated for representation of each chromosome. The weights
are adjusted through the GA algorithm until the optimal weights are achieved.

Next, a fitness function, defined by

Fitness =
m∑

i=1

m∑

j=1

σijxixj +

(
m∑

i=1

E(Ri)xi −R∗p

)2

(14)

is designed to take into consideration the tradeoff between the risk and the
return. The optimal solution is obtained by minimizing this function. The first
term of the fitness function minimizes the risk, which is defined as volatility
of assets included in the portfolio, while the second term minimizes the differ-
ence between the portfolio’s overall return and the pre-defined required return,
R∗p. The fitness function for each chromosome determines the assets chosen for
the selection, crossover, and mutation, which are performed similarly to the
processes in the first GA. The results of these processes determine the gener-
ation for the next iteration. The final generation determines the distribution
of wealth among the chosen assets.

The algorithm was tested on data obtained from Shanghai Stock Exchange
during a period ranging from January 2001 to December 2004. The test used
monthly and yearly available information. After the first stage of the algo-
rithm, top 10, 20, and 30 stocks were selected for three different experiments.
The results showed that the greater the number of stocks selected to be in-
cluded in the portfolio, the lower the return of the portfolio. The portfolio

8 Magoč et al.

with 10 stocks produced by the genetic algorithm was also tested against the
equally weighted portfolio, which allocates equal amount of money in each
of 10 stocks. The investment portfolio that resulted from the GA constantly
outperformed the equally weighted portfolio.

A similar two-stage genetic algorithm was build in [19]. The only dif-
ferences are the details of asset representation and selection, crossover, and
mutation processes. An asset is again represented as a chromosome, which is
an n−dimensional vector consisting of n parameters called genes. If the initial
population contains m assets, the selection process picks exactly [m

2] assets
with the highest fitness and discards all other assets. For the crossover stage,
a random positive integer, r ≤ n, is selected and two offsprings are produced
by the following procedure. The first offspring copies the first r genes from
the first parent and the last n − r genes from the second parent, while the
second offspring is created by copying the first r genes from the second parent
and the last n − r genes from the first parent. Formally, two parents P1 and
P2 yield two offsprings O1 and O2 by following rules:

O1 = {gi|gi ∈ P1 if i ≤ r else gi ∈ P2} (15)

and
O2 = {gi|gi ∈ P2 if i ≤ r else gi ∈ P1} (16)

where gi represents the ith gene.
Finally, the mutation is performed by randomly selecting another positive

integer r, r ≤ n. All the genes except the rth gene are copied, and gene r takes
a random value that represents a possible mutation.

The algorithm was tested on data obtained from the Australian Stock
Exchange. The results were compared against a Greedy algorithm and the
comparison showed that the genetic algorithm performed only slightly weaker
than Greedy algorithm but ran much faster.

4 Rule-based expert systems

Even though genetic algorithms showed good results when applied to portfolio
management, other intelligent systems have been used as well to optimize the
distribution of wealth among assets. Rule-based expert system is one of these
techniques, so we review the basic of expert systems and then describe their
application to portfolio selection.

4.1 Theoretical background

Rule-based expert system simulates the decision making ability of a human
expert in a field of interest (see e.g., [23]). The system is designed to allow

Computational Methods in Finance 9

“communication” between a user and itself in order to obtain some informa-
tion that is necessary for solving a problem. This is done through a user-
interface, which consists of a pseudo-natural language processing component
that allows interaction between the user and the system using a limited form
of natural language. Another role of the user interface is to display the solution
of the problem being considered to the user along with possible explanation
for the decision actually made.

The “brain” of the expert based system consists of two parts–the knowl-
edge base and the inference engine. The knowledge base contains the facts
and the rules of the subject at hand. The rules are usually the rules of predi-
cate calculus. The inference engine consists of processes that manipulate the
knowledge base to make inferences.

The rules are usually directly entered in the system’s knowledge base. How-
ever, sometimes the rules are inferred through training samples. The process
of building an expert system this way usually iterates through many cycles
until human experts are satisfied by its performance. The test cases are run
on the system to ensure that the system provides the same results as would a
human expert in the field.

There are several methods to make inferences from the given rules, but for-
ward chaining and backward chaining are the most commonly used ones [10].
Forward chaining, as the name suggests, starts with the facts and deduces the
conclusion by applying rules to the facts. On the other hand, backward chain-
ing involves reasoning in the opposite direction. It starts with the hypothesis
and tries to induce the facts to support the hypothesis.

An expert-based system is the simplest example of rule-based systems that
has been applied to the selection of optimal portfolio [6]. However, portfolio
management involves numerous tasks that, in real life, would not be performed
by a single expert. To better simulate the behavior of human experts, a sin-
gle expert systems have been used as a base for development of multi-agent
systems. Multi-agent systems simulate tasks of several experts and combine
their expertise to make a final decision [29]. This kind of system allows com-
munication among temporally and spatially separated experts, which is why
they have found application in lots of different areas.

4.2 Applications to portfolio management

The first attempt to design an expert system to assist portfolio managers is
described in [6]. The basic idea of this system, called Folio, is to interview a
user and use an expert’s knowledge to first determine the user’s investment
goals and then build the portfolio that best suits the situation. The algorithm
consists of three steps: the interview of the investor, the inference of the goals
of the investor, and the optimization of distribution of wealth to reach goals
of the investor.

The interview contains a set of questions that help the expert to derive
the correct goal of the investor. The simple questions determine the user’s

10 Magoč et al.

acceptance of the level of risk, the desired return, and the user’s tax bracket
among others. Based on the obtained answers, the algorithm infers the rules
of a user’s goal, and the rules are used to determine the goals of the investor.

Folio recognizes 14 different goals for investment including acquiring a
required level of return, reducing risk by investing into different assets, and
minimizing risk while attaining the desired return. Each goal is characterized
by five parameters: a target value, a penalty for exceeding the target value,
a penalty for falling short of the target value, a lower bound under which
the penalty becomes infinite, and an upper bound above which the penalty
becomes infinite. These parameters are established from the inferred rules.
About 50 rules (derived from interview) are used to infer one or more param-
eters of the goals. Sometimes, a parameter has more than one possible value,
in which case a heuristics is used to determine the most certain value.

When the goal and its parameters are specified, Folio uses a goal pro-
gramming algorithm to determine the distribution of wealth among assets
that best fits the goal parameters. The goal programming algorithm used by
Folio is a linear programming solver whose objective function is set to calcu-
late the differences between the user’s target values and the obtained values
for each of the parameters. The algorithm minimizes the sum of the devia-
tions of obtained values from desired values. The optimal wealth distribution
among classes of assets is suggested. The algorithm considers nine classes of
assets which include different levels of low-risk to high-risk assets. However,
the distribution of wealth among each class is not given by this algorithm for
several reasons. First, this method does not require Folio to consider thou-
sands of investment assets that exist in the market and therefore, reduces
the complexity of the algorithm. Second, Folio requires only the aggregate
knowledge about the properties of each asset class and not the knowledge of
individual assets. Moreover, the aggregate values change less slowly than the
individual asset’s characteristics, so Folio stays current for longer time period.
Finally, picking the exact assets for the investment is the responsibility of an
investment advisor and not Folio.

Even though performance of Folio has not been tested on real data, this
algorithm is the foundation for the further development of expert based sys-
tems which evolved into multi-agent systems for portfolio management. The
advantages of multi-agent systems (MAS) over the single-agent systems in-
clude [29]:

• The ability to avoid performance bottlenecks due to one stage in the multi-
stage process.

• Possibility for interconnection and interoperation of multiple systems.
• Natural distribution of tasks among different agents.
• Possibility to connect spatially and temporally distributed experts.
• Enhancement of overall system performance including reliability, compu-

tational efficiency, maintainability, flexibility, and reuse among others.

Computational Methods in Finance 11

A multi-agent system for portfolio monitoring, called Warren, was de-
veloped in [30] and further improved and implemented in [29]. Warren was
designed to monitor portfolio rather than manage it. Monitoring portfolio is
a continuous picture of an existing portfolio, which helps to determine if re-
allocation of assets is necessary, but does not suggest how to redistribute the
wealth. The goal of Warren is to provide an overall picture of the existing
portfolio based on the numerous available data from different sources.

Warren is composed of several types of agents: interface, task, middle, and
information agents. The interface agent, Warren Interface, communicates with
investor. This type of agent interviews the user and collects all necessary data
that determine the goals of the investor. It also displays a comprehensive sum-
mary of the user’s current portfolio and allows the user to buy and sell assets.
The middle agent, MatchMaker, helps match agents that request services with
agents that provide those services.

The task agents, RiskCritical agent and Comptroller, perform tasks. The
tasks are performed by formulating problem-solving plans and carrying them
out in collaboration with other agents. RiskCritical agent calculates the risk
of the portfolio, while Comptroller agent is in charge of buying and selling
assets.

The information agents monitor and collect financial information about
companies of interest when requested by a middle agent. Warren contains four
information agents: FdsHistory agent, iYahooStocks, iEdgar, and TextMiner.
FdsHistory agent provides a historical view of financial data summary, iYahoo-
Stocks provides stock prices, iEdgar provides financial data summaries from
SEC’s Edgar web site, and TextMiner provides financial news analysis. Fd-
sHistory, iYahooStocks, and iEdgar provide quantitative data about companies
of interest, while TextMiner provides qualitative data available from numerous
news agencies.

TextMiner is designed as a text classification agent to sort data available
from a high volume of news reports about financial assets since only the use-
ful details should be considered when monitoring portfolio. TextMiner sorts
the news from Reuters, CNN, Business Wire, etc. by first separating financial
from non-financial news in articles. The financial news cover the reports on
company’s earnings, movements of stock price, revenues, and similar informa-
tion, while the news about corporate control and legal and regulatory issues
are considered non-financial. To separate financial from non-financial data,
TextMiner was trained on a set of 1,239 news articles, which were labeled
manually. The selection process is based on the weighting of commonly used
terms (words or phrases) in the following way. First, each news article is rep-
resented in a high-dimensional space, where each dimension corresponds to a
term. Then, the set of news articles is represented by the term-by-document
matrix M = T ×N , where T is the number of terms and N is the number of
articles. The set of terms T = {t1, . . . , tt, . . . , tT } is constructed by eliminat-
ing the words whose frequency is higher than frequent threshold (words that
are considered to be just features) and the words whose frequency is lower

12 Magoč et al.

than infrequent threshold. Each term has its weight wt, which indicates how
important the term is for the given document. All the weights are scaled from
0 to 1 with the higher weight being given to terms that appear often in one
article but less frequently in other documents. Precisely, the weight of a word
is determined by

wt =
(1 + log(fit)) · logN

dt√∑
s 6=t(log(fis) + 1)2

(17)

where fit is the number of times the term t occurs in the document i, and dt is
the number of documents in which the word t occurs. The weight is normalized
by the document’s length. After the weights for each term are determined, the
article d is compared to one of the classes, C = {financial, non-financial}. A
class is determined by the mean vector of all documents in the class,

c =
1
|c|

∑

d∈c

d, (18)

and the calculation of similarity is the measure of the cosine of the angle
between the class vector and the document vector

s(di, cj) = arg max
cj∈C

di · cj

||di|| · ||cj || . (19)

When financial news are separated from non-financial news, they are clas-
sified into one of five groups: good, good–uncertain, neutral, bad–uncertain,
bad. Here the ‘good’ news are the ones clearly showing a company’s good
financial standing whereas ‘bad’ news are the ones clearly showing the bad
financial standing of a given company. ‘Neutral’ news mention financial facts
but do not give enough information to determine whether the facts indicate the
good or the bad financial state of a given company. Two ‘uncertain’ categories
refer to the prediction of future behavior of the company. The classification
into one of five classes is performed by co-locating phrases, that is looking for
words in the article that are usually in the same order in a sentence but not
necessarily next to each other, such as ‘earning’ and ‘increased’. The selection
of useful co-located phrases is based on the training set of data.

Finally, a step-by-step description of the performance of Warren follows.
First, the MatchMaker initializes the virtual work-space for agent-naming and
resources for Warren, and all the other agents register their services with
MatchMaker. The Warren Interface displays the current portfolio of the in-
vestor, and allows the user to buy/sell assets. If the investor requests the
financial information about a particular company, the interface agent sends
the request to the middle agent, and the middle agent invokes information
agents to provide requested information. The information agents look for the
information on the requested company and provide it to the interface agent.
Warren Interface displays the gathered information and the RiskCritical agent

Computational Methods in Finance 13

calculates the risk of new portfolio. Finally, the Comptroller agent updates the
investor’s portfolio if he/she decides to buy/sell an asset.

Even though the entire model has not been tested on real-life data,
TextMiner showed great results when compared to traditional Bayesian ap-
proaches to classify articles. With this in mind, Warren gives a promising tool
for portfolio monitoring.

5 Neural networks

Neural networks provide yet another approach to identify an optimal port-
folio. Thus, we touch the basics of neural networks that are necessary for
the understanding of several examples that use this type of computational
intelligence techniques in a portfolio selection process.

5.1 Theoretical background

An artificial neural network or just neural network (NN) is designed to imitate
the actions of human neural system, which consists of neurons and axons (the
links between neurons) (see e.g.,[31]). Similarly, a neural network consists of
nodes and directed links between nodes. NN is based on ability to learn from
training data sets in order to perform accurately on real data.

Several types of neural networks exist, the simplest one being the percep-
tron.

Definition 4.1. (Perceptron) The perceptron is a neural network that
consists of two layers of nodes: input and output layers. The input nodes,
x = (x1, . . . , xn), represent the input values, and the output nodes, y =
(y1, . . . , ym), carry out mathematical calculations and output the results.

The function used to calculate the outputs is called the activation function.
Most commonly used activation function in a perceptron is the sign function:

ŷ = sign

(
n∑

i=1

wixi

)
= sign(w · x), (20)

where w = (w1, . . . , wn) is the vector of weights assigned to the links from
input to output nodes. The weights represent the strength of the connection
between the nodes and are determined by a learning process using the training
data set for which the expected outcome is known. The weights are updated
after each training example by

w
(k+1)
j = w

(k)
j + λ

(
yi − ŷ

(k)
i

)
xij , (21)

where w(k) is the weight of the ith input link after the kth iteration, xij is the
value of the jth attribute of the training example xi, and λ is the learning

14 Magoč et al.

rate that is determined by user. The value of λ belongs to interval [0, 1] and
is designed to control the amount of adjustment after each training sample.
The learning rate is either a constant that stays small throughout the entire
training process to avoid overfitting to a specific training data element or the
λ is adaptable in which case it starts with a large value but the size gets
smaller during the training process.

The perceptron model is the simplest kind of neural network and is used
only for classification purposes. However, more complex multilayer networks
are much more powerful and applicable to other types of problems.

Definition 4.2. (Multilayer network) A multilayer network is a neural
network that contains one or more hidden layers of nodes that perform calcu-
lations and influence more accurate weight adjustments.

In a multilayer network, the links between nodes can go either only from
a lower layer to a higher layer (input being the lowest layer and output the
highest layer), which is the case in feed-forward networks, or the links can
connect nodes in the same layer or even be directed towards the previous lay-
ers, which is the case in recurrent networks. The multilayer networks can use
different activation functions, such as linear, sigmoid, and hyperbolic tangent
function among others. These functions allow more complex situations to be
modeled by multilayer networks.

A neural network learning algorithm works by minimizing the sum of
squared errors:

Err(w) =
1
2

N∑

i=1

(yi − ŷi)2, (22)

where ŷ depends on w. If ŷ is replaced by w · x, then the error function
becomes quadratic in its parameters, and a global minimum can be easily
found. However, if a non-linear function is used as an activation function, hid-
den and output layers produce non-linear outputs, so finding the solution for
w is harder. Usually this problem is solved using a gradient descent method,
which basically increases the weights in a direction that reduces the overall
error function:

wk+1
j = wk

j − λ
∂Err(w)

∂wj
, (23)

where λ is the learning rate. This method can be successfully used to learn
weights for the output layer. However, it might not be as easy to perform
the computation for hidden layer since it is not possible to know their error
term, ∂Err

∂wj
, without knowing what their output values should be. To solve

this problem, backpropagation algorithm is used, which forces two phases in
each iteration of the algorithm: the forward and the backward phases. In
the forward phase, the weights computed in the previous iteration are used to
compute the outputs of each node in the network and the computations follow
in forward direction. In the backward phase, the weights are updated in the

Computational Methods in Finance 15

reverse order–the weight update formula is applied to the last layer first, and
then for each previous layer one-by-one going towards the first layer, which
allows the use of output at the next level to compute the error at the previous
layer.

5.2 Applications to portfolio management

Neural networks have found several applications in portfolio management
([2],[4],[20],[33],[34]) ranging from forecasting the behavior of investment as-
sets to optimizing the distribution of wealth among assets.

Lowe [20] used analog NN to find the optimal distribution of wealth among
investment assets. The optimal portfolio is constructed by minimizing the risk
function defined by

risk =

√√√√ 1
T

T∑
t=1

[
y(t)−

m∑

i=1

wixi(t)

]2

, (24)

where m is the number of assets, T is the number of iterations, y(t) is the
market portfolio return, xi(t) is the return of the asset i at time t, and wi is
the proportion of wealth invested into the asset i. The risk function is subject
to a non-negativity constraint of the weights wi ≥ 0 for every asset i and

the normalization constraint
m∑

i=1

wi = 1. This linear constraint optimization

problem could be transformed into a nonlinear unconstrained optimization
problem that minimizes the cost function

E =
1
T

T∑
t=1

[
y(t)−

m∑

i=1

wixi(t)

]2

+ λ

[
m∑

i=1

wi − 1

]2

+ µ

m∑

i=1

1
1 + eβwi

. (25)

The first term of this equation corresponds to minimizing the risk; the second
term replaces the normalization constraint; and the third term transforms
non-negativity constraint into a barrier potential term, which has the form of
a logistic used in multilayer perceptron studies. The parameters λ and µ are
penalties for breaking constraints, and could be adjusted based on investors
preferences.

The minimization of the cost function could be performed by using any
standard gradient based method, one of them being Runge-Kutta integration
algorithm with a possibility to adapt step size based on the results form
previous iteration. The performance of analog neural network in portfolio
management was tested on seven stocks in the electricity sector of the UK
market for 160 consecutive days starting at 26th of September 1989.

Another application of neural networks in portfolio management was de-
scribed by Casas [2] to predict which of three considered classes of assets
will outperform the other two. The three classes in consideration are: stocks,

16 Magoč et al.

bonds, and money markets. The idea is to invest all wealth into one class
of assets for a given time interval, and then re-evaluate the performance of
the asset classes and make a new decision for the next time interval. This
approach does not diversify the portfolio to reduce risk, and is based purely
on the return of three classes of assets rather than performance of individual
assets.

A neural network, that uses fundamental factors such as earnings, price
per earning ratios, interest rates, and inflation, as input values, is trained with
backpropagation algorithm to predict behavior of three classes of assets. The
relative performance of classes of assets is measured by the risk premium. The
risk premium between two asset classes A and B is calculated as

ΓAB = E(A)− E(B), (26)

where E(x) is the expected return of the class x. Assuming that risk premium
follows normal distribution, the probability that class A outperforms the class
B is given by

P (A > B) = CND(ΓAB , µAB , σ2
AB), (27)

where CND is cumulative normal distribution function, µAB is mean risk
premium, and σ2

AB is standard deviation of risk premium. The algorithm
calculates the probabilities that stocks will outperform bonds, bonds will out-
perform money markets, and stocks will outperform money markets.

The performance of this algorithm was tested against a buy-and-hold strat-
egy that buys and holds S&P500 Index for the entire time period under con-
sideration, which was 12 months in this case study for the year 1999. The NN
approach outperformed the buy-and-hold strategy at the end of 12 months.
Moreover, it predicted correctly 92% of the time which asset class would out-
perform the other two classes.

Another example of forecasting ability of NN was tested in [34]. In this
paper, the authors presented a portfolio management algorithm that consists
of three parts. The first part uses error correction neural network (ECNN) to
forecast the behavior of assets. The second step uses a higher-level feedforward
network to compute the excess return of one asset over another asset. Finally,
the third part determines the optimal wealth distribution based on the excess
returns.

Forecasting the behavior of each asset in the future is based on the ex-
pected return of the asset, which depends on the previous state of the asset,
st, external influences, ut, and the difference between the predicted output,
yt, and the observed output, yd

t , at the previous iteration. Thus,

st+1 = f(st, ut, yt − yd
t), (28)

where yt = g(st) is determined based on the current state. In the suggested
model, the expected return is predicted based on error correction neural net-
work, which uses weight matrices of appropriate dimensions, A,B,C, and D,
to transform the problem into the following set of equations:

Computational Methods in Finance 17

st+1 = tanh(Ast + But + Dtanh(Cst − yd
t)) (29)

yt = Cst. (30)

The optimization of parameters is obtained by finite unfolding in time
using shared weights, which solves

min
A,B,C,D

1
T

T∑
t=1

(yt − yd
t)2 (31)

After the parameters are established by an ECNN, the expected return is
calculated for each asset, fi. Next, the difference between expected returns
of two assets is calculated for each pair of assets, eij = fi − fj . Finally, the
cumulative excess return of each asset is calculated as weighted sum of excess
returns,

ei =
k∑

j=1

wijeij , (32)

where wij ≥ 0 is the assigned weight to the pair (i, j) of assets. Based on
cumulative excess returns, the proportion of wealth that should be invested
into the asset i is calculated by

ai =
eei

k∑
j=1

eej

= ai(w, f1, . . . , fk). (33)

This form guarantees that exactly all wealth is distributed (
∑

ai = 1) and the
proportions of investment are non-negative (ai ≥ 0).

However, there are sometimes market share constraints given by the asset
manager, and they are usually given in the form of an interval with a lower
bound and an upper bound. If the mean of the available allocation for asset i
is denoted by mi, and the admissible spread is given by ∆i, then the propor-
tion ai should fall into the interval [mi −∆i,mi + ∆i]. The vector of means,
m = (m1, . . . ,mk), is used as a benchmark distribution. To comply with the
requirements of the manager, the excess return is adjusted by a bias vector v
so that

ei = vi +
k∑

j=1

wij(fi − fj), (34)

where the vector v = (v1, . . . , vk) could be determined in advance by setting
the excess returns to zero and solving the system of nonlinear equations

m1 = a1(v1, . . . , vk)

18 Magoč et al.

...

mk = ak(v1, . . . , vk). (35)

The non-unique solution of the form

vi = ln(mi) + c (36)

could be simplified by setting c = 0.
Since the interval [mi−∆i,mi +∆i] represents a constraint for parameters

wi1, ..., wik, the optimal portfolio selection defined as the return maximization
problem can be solved by solving a penalized maximization problem

max
w

1
T

T∑
t=1

k∑

i=1

[ritai(fit, . . . , fkt,w)− λ||ai −mi||∆i
] , (37)

where rit is the actual return of the asset i at time t and

||x||∆ =

{
0 if |x| ≤ ∆

|x| −∆ otherwise
(38)

The proposed model was tested on the basis of monthly data of G7 coun-
tries markets. The data from September 1979 to June 1993 was used to train
network, and based on produced coefficients, the model was tested in the pe-
riod July 1993 to May 1995. The results showed that the neural network based
model outperformed the benchmark model by almost 10%.

The modification of asset allocation step of this algorithm is presented in
[33] and shows how to incorporate the risk of investing into selected assets
rather than determining the optimal portfolio only based on the return. The
authors use an ECNN (developed in [34]) to forecast the return of assets,
ri, which is used to calculate the risk-adjusted expected excess return rather
than the expected return that does not consider risk related to the assets. The
risk-adjusted excess return is defined by

ρi =
∑

t

rit − rf

|rit − rd
it|

, (39)

where rf is the risk-free asset return and rd
it is the actual return at time

t. Based on the risk-adjusted excess returns, the assets are ranked from the
highest to the lowest, and all assets whose risk-adjusted excess return is higher
than a pre-defined threshold value ρ∗ are selected to be included into the
portfolio.

If we denote the set of assets included in portfolio by A, the proportion of
wealth invested in each of the selected assets is determined by

wi =
ρi∑

A

ρj
. (40)

Computational Methods in Finance 19

This model was tested on the German stock market by using weekly data
from 68 stocks on a period ranging from November 1994 to June 1999, in
order to train the neural network considered. The algorithm’s performance
was tested on data from July 1999 to June 2000. Four portfolios were built
with different number of stocks included: 5, 10, 15, and 20 stocks. The re-
sults of the algorithm were compared to the performance of the benchmark,
which included all 68 stocks whose weights were chosen based on the shares
of the stocks in the market. All portfolios produced by the NN algorithm out-
performed the benchmark portfolio. Among the four derived portfolios, the
portfolio with the smallest number of assets performed better than all the
other portfolios.

Finally, [4] shows another application of NN as a forecast model as well
as a decision model for wealth allocation. The multilayer perceptron (MLP)
with one hidden tanh layer (with H hidden units) and a linear output layer
is considered. The function represented by MLP is given by

f(x; θ) = A2tanh(A1x + b1) + b2, (41)

where x is the current distribution of wealth among assets, A1 is an H ×M
matrix (with M being the dimension of the input vector x), A2 is an N ×H
matrix (with N being the dimension of the output vector), b1 is an H-element
vector, b2 is an N -element vector, and θ = (A1, A2, b1, b2) is the vector of
parameters. The parameters represented by the vector θ are found by training
the network to minimize a cost function; the cost function differs for two types
of the model–forecast and decision model. The optimization is performed by
using a conjugate gradient descent algorithm. The gradient of the parameters
with respect to cost function is computed using the backpropagation algorithm
for MLP.

In the forecast model, a neural network is used to predict the returns of
assets in the next time period, µt+1|t, given explanatory variables ut, which
belong to the set of the available information, It. The network is trained to
minimize the prediction error of returns of assets in the next time period by
using a quadratic loss function

CF (θ) =
1
T

T∑
t=1

||f(ut; θ)− rt+1||2 + CWD(θ) + CID(θ), (42)

where || · || is the Euclidian distance, f(·; θ) is the function computed by MLP,
and CWD(θ) and CID(θ) are terms used for regularization purposes. The reg-
ularization is needed to prevent overfitting by specifying a priori preferences
on weights in the neural network. CWD(θ) is the weight decay. It tries to re-
duce magnitude of weights in the network by setting a penalty on the squared
norm of all network weights. On the other hand, CID(θ) is the input decay.
It tries to utilize useful inputs to train the network by penalizing the inputs
that turn out to be unimportant.

20 Magoč et al.

The neural network decision model uses the NN to directly determine the
distribution yt of wealth among assets based on the explanatory variables ut.
NN is trained to minimize the negative of the financial performance evaluation
criterion

CD(θ) = − 1
T

T∑
t=1

Wt + CWD(θ) + CID(θ) + Cnorm, (43)

where Cnorm is a preferred norm of the neural network. The preferred norm
is important since two vector solutions that differ only by a constant multiple
would be considered as different solutions without the use of preferred norm.
The result would be that, for each vector θ, there would be a direction with
(almost) zero gradient, so there would be no local minimum. The preferred
norm variable, which is given by user, re-scales the parameters so that the
norm constraint is achieved.

Training MLP for the decision problem is more complex than for the fore-
cast model. It includes a feedback loop, which induces a recurrence by in-
putting the distribution yt−1 to determine the output yt. Also the backpropa-
gation through time algorithm is used to compute the gradient by going back
in time, starting from the last time step until the first one.

Sometimes, the user has an idea of the optimal portfolio or has a priori
preferences of the portfolio structure (i.e. the proportion of wealth invested
into stocks versus the proportion invested into bonds). In this case, instead of
the preferred norm, the preferred portfolio is considered. Deviation from the
preferred portfolio is penalized by

Cref.port. =
1
T

T∑
t=1

penaltyref.port.(yt), (44)

where penalty is calculated as the squared distance between the network out-
put and the reference portfolio.

For testing purposes, Toronto Stock Exchange market data from January
1971 to July 1996 were used, and the results proved to outperform the bench-
mark algorithms. It was also shown that the decision model is preferred to
the forecast model as it relies on fewer assumptions.

6 Support Vector Machines

Finally, we give a general description of support vector machines and their
application to portfolio selection.

6.1 Theoretical background

Support vector machine (SVM) is one of the most commonly used classifi-
cation techniques (see e.g.,[31]). It classifies data into one of two groups by

Computational Methods in Finance 21

constructing a hyperplane that separates these two groups. The simplest sit-
uation is when the data are linearly separable. In this case, usually more than
one hyperplane could be constructed to represent the boundary between two
classes that will result in a zero error. However, instead of minimizing the em-
pirical error (or error produced by training data), the best hyperplane should
minimize the generalization error, that is the error that could result from
classifying real data based on the model developed from the training set. To
explain how to minimize the generalization error, we first define the margin
hyperplanes. We consider a hyperplane b and create two other hyperplanes,
b1 and b2, such that they are parallel to b and as far as possible from b (going
into opposite direction from b) so that they do not touch any training data
element. The distance between the hyperplanes b1 and b2 is called the margin
of hyperplane. Since several non-parallel hyperplanes usually exist in the lin-
early separable case, we select the pair of parallel hyperplanes that yield the
highest margin of hyperplane. The decision boundary is represented by the
hyperplane going straight through the middle between two selected margin
hyperplanes.

To formally define the best hyperplane, we consider a set of N training
examples, each of them denoted by (xi, yi), where xi = (xi1, . . . , xid) corre-
sponds to the attribute set for the ith training example and yi ∈ {−1, 1} is the
class label. Given this notation, the decision boundary is given by w·x+b = 0,
where w and b are the parameters of the model which are determined through
training. Based on the calculated parameters, the decision for a new data sam-
ple z, which is not in the training set, is determined by

y =

{
1 if w · z + b > 0

−1 if w · z + b < 0
(45)

Since the margin hyperplanes are defined as

w · x + b = ±1, (46)

each training data sample satisfies the conditions

w · xi + b ≥ 1 if yi = 1 (47)

and
w · xi + b ≤ −1 if yi = −1. (48)

These two conditions could be simplified to

yi(w · xi + b) ≥ 1. (49)

Furthermore, we denote the margin hyperplanes by w · x + b = +1 and
w · x + b = −1, which implies that the margin, d, of the decision hyperplane
is d = 2

||w|| . To simplify calculations necessary to find the best hyperplane,

22 Magoč et al.

||w|| is usually replaced by ||w||2. Thus, maximizing the margin is equivalent
to minimizing

f(w) =
||w||2

2
. (50)

We can formally define the objective of the learning process in SVM training
phase as follows:

Definition 5.1. (Linear SVM: separable case): The learning task in SVM
can be formalized as the following constraint optimization problem:

min
w

||w||2
2

(51)

subject to yi(w · xi + b) ≥ 1 ∀i = 1, 2, . . . , N. (52)

This problem of solving for w and b is a convex optimization problem
(since the objective function is quadratic and the constraints are linear) that
could be solved by using the standard Lagrange multiplier method, which
rewrites the objective function in terms of Lagrangian

LP =
1
2
||w||2 −

N∑

i=1

λi(yi(w · xi + b)− 1), (53)

where the parameters λi are called the Lagrange multipliers. The first term
tries to minimize the objective function, while the second term replaces the
constraint and must be minimized in order to reduce the penalty of not sat-
isfying the constraint. When solving for the Lagrange multipliers, many of
them are equal to zero. However, a few Lagrange multipliers that are non-
zero correspond to the training examples that lie exactly on one of the margin
hyperplanes and thus represent support vectors, which are used to find the
values of w.

The Lagrangian problem could be transformed into a dual problem that
involves finding only Lagrange multipliers. The problem maximizes the dual
Lagrangian

LD =
N∑

i=1

λi − 1
2

∑

i,j

λiλjyiyjxi · xj , (54)

where the Lagrangian multipliers must be non-negative.
The solution to this problem can be found using numerical techniques such

as quadratic programming. The solution for w is calculated by

w =
N∑

i=1

λiyixi (55)

and b is obtained by solving

Computational Methods in Finance 23

λi[yi(w · xi + b)] = 0. (56)

The decision boundary can be expressed as
(

N∑

i=1

λiyixi · x
)

+ b = 0. (57)

The previous description to find the optimal decision boundary works well
if the training data is linearly separable. However, it is not always the case.
Very often, any decision boundary would misclassify some training examples.
The problem could be approached by introducing positive slack variables ξi

that represent the error of the decision boundary for the training sample i [7].
Thus, the new objective function

f(w) =
||w||2

2
+ C

(
N∑

i=1

ξi

)
(58)

tends to minimize the error besides minimizing the original objective function.
Here C represents the penalty for misclassification, and is determined by user.
The new objective function and the inequality constraints

w · xi + b ≥ 1− ξi if yi = 1,

w · xi + b ≤ 1 + ξi if yi = −1, (59)

could be easily transformed into the Lagrangian where each Lagrangian value
is bounded above by the value of the parameter C:

0 ≤ λi ≤ C. (60)

This problem could be approached by using quadratic programming.
In some instances, however, a better solution exists than reducing the

misclassification. A non-linear decision bound might exist to correctly classify
training data that are not separable by linear method. The idea is to trans-
form the original coordinates of the training sample x into a new space Φ(x)
so that a linear decision bound can be used to correctly separate data in the
new space. The problem with this approach is to determine the mapping that
will lead to desired results. Now, the problem of learning from training data
becomes:

Definition 5.2. (Nonlinear SVM): The learning task in a non-linear SVM
can be formalized as the following constraint optimization problem:

min
w

||w||2
2

(61)

subject to yi(w · Φ(xi) + b) ≥ 1 ∀i = 1, 2, . . . , N. (62)

24 Magoč et al.

The attempt to solve this problem by transforming it into Lagrangian
is usually not easy due to need for calculation of the dot product between
the new spaces Φ(xi) and Φ(xj), which might be very complicated. However,
since the dot product is a measure of similarity between two instances xi and
xj , we can solve this problem by applying the kernel trick, which computes
the similarity between two instances in the transformed space by using the
original attribute set [1]. The kernel function

K(xi,xj) = Φ(xi) · Φ(xj) (63)

is the function that calculates the similarity of instances xi and xj by using
the attributes in the original space, which simplifies the computation of the
dot product. The use of kernel trick also does not require the knowledge of the
exact transformation Φ because the kernel function used in non-linear SVM
must satisfy Mercer’s theorem:

Theorem 5.3. (Mercer’s theorem): A kernel function K can be expressed
as K(u,v) = Φ(u) · Φ(v) if and only if, for any function g(x) such that∫

g(x)2dx is finite, then
∫

K(x,y)g(x)g(y)dxdy ≥ 0.

Support vector machine represents the most commonly used classifier that
has found implementation in different fields, one of them being the portfolio
management.

6.2 Applications to portfolio management

Support Vector Machine (SVM) has found implementation in classification
of stocks into one of two classes–the stocks with exceptional high returns
(Class+1) and the stocks with unexceptional returns (Class-1) [9]. SVM tries
to minimize a bound on the generalization error rather than the empirical
error as many other approaches do. It uses several financial indicators to
determine the performance of each asset. The n financial indicators of the
asset i are represented as a vector xi = (x1, ..., xn). The expected future return
of the stock is a binary dependent variable yi = ±1, where +1 represents the
Class+1 asset and −1 represents the Class-1 asset. Thus, the training set
of m companies consists of pairs {(x1, y1), (x2, y2), . . . , (xm, ym)} ⊂ RN ×
±1. The classifier (SVM) tries to learn from the training set, and it behaves
as a function that maps the input variables x into an output value y. The
misclassification is reduced by adjusting parameters.

SVM is a classifier that tries to construct an optimal separating hyper-
plane between two classes by minimizing the bound on the misclassification
risk. To solve linearly separable patterns, traditional approach using quadratic
programming is utilized to maximize the dual Lagrangian.

In the case of non-separable patterns, different kernel functions could be
used. In the test case, the Radial Basis Kernel, K(x,y) = exp(−||x − y||2),
was used.

Computational Methods in Finance 25

The method was tested with Australian Stock Exchange data between
1992 and 2000. The data from three years were used for training and valida-
tion of estimated parameters that were then used to predict the performance
of stocks in the next year. Eight groups of financial indicators were used to
calculate the performance of stocks: Return on Capital, Profitability, Lever-
age, Investment, Growth, Short term Liquidity, Return on Investment, and
Risk. The data for each stock were converted into an eight-element input vec-
tor. For the training samples, the output of each stock was determined by
its annual actual performance with the top 25% of stocks being selected into
Class+1, and the remaining stocks being assigned Class-1. For testing pur-
poses, the stocks selected into Class+1 group were given equal weights in the
portfolio. The created portfolio’s return outperformed the equally weighted
portfolio consisting of all available stocks, which was used as the benchmark
portfolio.

Summary of approaches. We have presented several attempts to use
intelligence systems in portfolio management. Genetic algorithms, rule-based
expert systems, neural networks, and support vector machines have all con-
tributed towards finding the optimal distribution of wealth among available
assets. With the exception of genetic algorithm, all other methods are based on
the ability to learn from examples and approximation of algorithm’s parame-
ters due to training samples. This could lead to overfitting of the parameters
to specific type of data or a specific sample, which might not be applicable in
other situations.

Moreover, all of the approaches do not consider the relationship between
the characteristics of an asset. For example, return and risk are known to
usually move in the same direction, that is higher the return of the asset,
higher the risk of that asset. However, the presented approaches do not take
into consideration this and many other existing relationships.

Furthermore, the return, the risk, and other characteristics of an asset are
assumed to be precisely known for each asset in consideration. In reality, this
is not always the case as the best we can do is to predict the future return
and risk. Sometimes, these predictions are not correct, but all the presented
techniques rely on precise knowledge of these values.

To face the drawbacks of the presented approaches, we propose a new
approach to portfolio optimization. The novel approach is based on multi-
criteria decision making and fuzzy integration over intervals.

7 Fuzzy integration and decision making

Before going into details of portfolio optimization problem, we review basics
of fuzzy measures, fuzzy integration, and multi-criteria decision making.

26 Magoč et al.

7.1 Theoretical background

A multi-criteria decision making (MCDM) problem seeks the optimal choice
among a (finite) set of alternatives. It can formally be defined as a triple
(X, I, (ºi)i∈I) where

• X ⊂ X1× · · · ×Xn is the set of alternatives with each set Xi representing
a set of values of the attribute i.

• I is the (finite) set of criteria (or attributes).
• ∀i ∈ I, ºi is a preference relation (a weak order) over Xi.

The next task is to “combine” the preference relations ºi of an alternative
into a global value for the alternative such that the final order of the alterna-
tives is in agreement with the decision maker’s partial preferences. The natural
way to construct a global preference is by using utility function for each at-
tribute to reflect partial preferences of a decision-maker, and then combine
these monodimensional utilities into a global utility function using an aggre-
gation operator. The utility functions ui : Xi → R such that for all xi, yi ∈ Xi,
ui(xi) ≥ ui(yi) if and only if xi ºi yi, scale the values of all attributes onto a
common scale. The existence of monodimensional utility functions is guaran-
teed under relatively loose hypotheses by the work presented in [17].

Numerous aggregation operators could be used to combine monodimen-
sional utilities into a single number that represents the value of an alternative.
Two simple approaches that correspond to optimistic and pessimistic behav-
ior of the decision maker are maximax and maximin strategies, respectively,
assuming that the goal of a decision-maker is to maximize the utility. The
maximax method compares the utilities of all attributes of an alternative and
chooses the highes utility value, max

i
ui(xi), to represent the global utility of

the alternative x = (x1, ..., xn). This approach reflects the optimistic behavior
of the decision-maker since he/she is concerned only with the attribute that
has the highest utility for the given alternative. The maximax method tries
to maximize the best criterion:

max
x∈X

(max
i∈{1,...,n}

ui(xi)). (64)

On the contrary, the maximin method reflects the pessimistic behavior of
the decision-maker as the decision-maker is concerned only with the attribute
that could result in the worst value. This method compares the utilities of all
attributes of an alternative and chooses the lowest utility value, min

i
ui(xi),

to represent the global utility of the alternative x. The decision-maker tries
to maximize the value of the worst case scenario:

max
x∈X

(min
i∈{1,...,n}

ui(xi)). (65)

To allow for a position between these extremes when making a decision,
a simple combination of maximax and maximin approaches is achieved by a
weighted aggregation operator

Computational Methods in Finance 27

max
allalternatives

(α max
i

ui(xi) + β min
i

ui(xi)), (66)

with α + β = 1 where α ≥ 0 and β ≥ 0 are weights given by the decision
maker. This approach simplifies to the optimistic case if α = 1 and to the
pessimistic case if β = 1.

These simple approaches are very tempting to use for quick decisions.
However, they focus only on a few criteria and ignore the impact of other
characteristics of alternatives, which often does not suit the situation. Thus,
we usually need to consider more complex aggregation operators that take
into consideration all attributes. The simplest and most natural of them is
a weighted sum approach, in which the decision-maker is asked to provide
weights, wi, that reflect the importance of each criterion. Thus, the global
utility of alternative x = (x1, ..., xn) ∈ X is given by

u(x) =
n∑

i=1

wiui(xi). (67)

The best alternative is the one that maximizes this value. Even though this
approach is attractive due to its low complexity, it can be shown that using an
additive aggregation operator, such as weighted sum, is equivalent to assuming
that all the attributes are independent [22]. In practice, this is usually not
realistic and therefore, we need to turn to non-additive approaches, that is to
aggregation operators that are not linear combinations of partial preferences.

Before approaching non-additive methods, we give the definition of a non-
additive measure, a tool for building non-additive aggregation operators.

Definition 6.1. (Non-additive measure) Let I be the set of attributes
and P(I) the power set of I. A set function µ : P(I) → [0, 1] is called a
non-additive measure (or a fuzzy measure) if it satisfies the following three
axioms:

(1)µ(∅) = 0 : the empty set has no importance.
(2)µ(I) = 1 : the maximal set has maximal importance.
(3)µ(B) ≤ µ(C) if B, C ⊂ P(I) and B ⊂ C: a new criterion added cannot

make the importance of a coalition (a set of criteria) diminish.

Of course, any probability measure is also a non-additive measure. There-
fore non-additive measure theory is an extension of traditional measure theory.
Moreover, a notion of integral can also be defined over such measures.

A non-additive integral, such as the Choquet integral [5], is a type of a
general averaging operator that can model the behavior of a decision maker.
The decision-maker provides a set of values of importance, this set being the
values of the non-additive measure on which the non-additive integral is com-
puted from. Formally, The Choquet integral is defined as follows:

28 Magoč et al.

Definition 6.2. (Choquet integral) Let µ be a non-additive measure on
(I,P(I)) and an application f : I → R+. The Choquet integral of f w.r.t. µ
is defined by:

(C)
∫

I

fdµ =
n∑

i=1

(f(σ(i))− f(σ(i− 1)))µ(A(i)),

where σ is a permutation of the indices in order to have f(σ(1)) ≤ · · · ≤
f(σ(n)), A(i) = {σ(i), . . . , σ(n)}, and f(σ(0)) = 0, by convention.

It can be shown that many aggregation operators can be represented by
Choquet integrals with respect to some fuzzy measure. However, note that
there are other non-additive approaches to decision making besides the Cho-
quet integral, one of them being the Sugeno integral [27]:

Definition 6.3. (Sugeno integral) Let µ be a fuzzy measure on (I,P(I))
and an application f : I → [0, +∞]. The Sugeno integral of f w.r.t. µ is
defined by:

(S)
∫

f ◦ µ =
n∨

i=1

(f(x(i)) ∧ µ(A(i))).

where ∨ is the supremum and ∧ is the infimum.

Even though the Choquet and the Sugeno integrals are structurally similar,
their applications are very different. The Choquet integral is generally used
in quantitative measurements, while Sugeno integral has found more applica-
tions in qualitative approaches. However, we restrict ourselves to quantitative
approaches.

Although the Choquet integral is well suited for quantitative measure-
ments, it has a major drawback. The decision maker needs to input a value
of importance of each subset of attributes, that is total of 2n values. More
precisely, since the value of the empty set and the entire set are known by
the definition of a fuzzy measure, the exact number of values required from
the decision-maker is 2n − 2. This still leads to an exponential complexity
and is therefore intractable. However, we can overcome intractability by using
2-additive measure to limit the complexity to a O(n2) (as shown in [3]) and
still get accurate results.

Before giving the definition of a 2-additive measure, we need to define no-
tion of interaction indices of orders 1 and 2. The importance of an attribute (or
the interaction index of degree 1) is best described as the value this attribute
brings to each coalition it does not belong to. It is given by the Shapley value
[26]:

Computational Methods in Finance 29

Definition 6.4. (Shapley value) Let µ be a non-additive measure over I.
The Shapley value of index i is defined by:

v(i) =
∑

B⊂I\{i}
γI(B)[µ(B ∪ {i})− µ(B)] (68)

with

γI(B) =
(|I| − |B| − 1)! · |B|!

|I|! (69)

and |B| denoting the cardinal of B.

While the Shapley value gives the importance of a single attribute to the
entire set of attributes, the interaction index of degree 2 represents the inter-
action between two attributes, and is defined by ([8],[13]):

Definition 6.5. (Interaction index of degree 2) Let µ be a non-additive
measure over I. The interaction index between i and j is defined by:

I(i, j) =
∑

B⊂I\{i,j} (ξI(B) · (µ(B ∪ {i, j})

−µ(B ∪ {i})− µ(B ∪ {j}) + µ(B))

with ξI(B) = (|I|−|B|−2)!·|B|!
(|I|−1)! .

The interaction indices belong to the interval [−1,+1] and

• I(i, j) > 0 if the attributes i and j are complementary;
• I(i, j) < 0 if the attributes i and j are redundant;
• I(i, j) = 0 if the attributes i and j are independent.

Even though we can define interaction indices of any order, defining the
importance of attributes and the interaction indices between two attributes is
generally enough in MCDM problems. Thus, 2-additive measures constitute a
feasible and accurate tool in this setting. The formal definition of 2-additive
measure follows [8]:

Definition 6.6. (2-additive measure) A non-additive measure µ is called
2-additive if all its interaction indices of order equal to or larger than 3 are
null and at least one interaction index of degree two is not null.

We can also show [12] that the Shapley values and the interaction indices of
order two offer us an elegant way to represent a Choquet integral. Therefore, in
a decision-making problem, we can ask the decision maker to give the Shapley
values, Ii, and the interaction indices, Iij , and then use the Choquet integral
w.r.t. to a 2-additive measure, µ, to obtain the aggregation operator:

30 Magoč et al.

(C)
∫

I

fdµ =
∑

Iij>0

(f(i) ∧ f(j))Iij

+
∑

Iij<0

(f(i) ∨ f(j))|Iij |

+
n∑

i=1

f(i)(Ii − 1
2

∑

j 6=i

|Iij |).

This form of the Choquet integral is accurate and practical approach to
many situation, one of them being portfolio management.

7.2 Application to Portfolio Management

We propose two different algorithms that make use of multi-criteria decision
making approach to find the optimal portfolio allocation. A two-stage algo-
rithm uses a multi-criteria decision making setting to rank all asset. Based
on the rank, good assets are selected among thousands of assets that exist in
market and wealth is invested in these selected assets only. The second step of
the algorithm utilizes another MCDM setting to determine the exact wealth
allocation among the assets to best suit the goals of the investor.

The second algorithm utilizes similar multi-criteria decision making set-
tings by starts by clustering all assets into three groups based on their risk.
Based on the investor’s acceptable level of risk, distribution of wealth among
three groups of assets is determined and MCDM setting is created to deter-
mine the exact allocation of wealth within each cluster.

We first define a multi-criteria decision making problem by considering the
set of all asset as the set of alternatives. We determine a finite set of criteria
that characterize investment assets–return (R), risk (r), time to maturity (t),
transaction cost (c), etc., and define the utility functions for each of them. The
simplest method to choose rational utility functions is to provide mappings
from the values of an alternative onto the interval [0, 1], f : Xi → [0, 1]. For the
return of an asset, this could mean that the highest realistic return is mapped
into 1, the lowest return to 0, and the other returns are proportionally mapped
into values between 0 and 1. The utility of risk could be defined in a similar
fashion, but taking the reciprocal of the risk since a high value of risk is less
desired than a low value of risk. Similar arguments hold for time to maturity
and transaction cost. Once the utility function for each criterion is defined,
we proceed to calculation of the value of each asset.

If the decision maker (the investor) is concerned only with the return or
only with the level of risk, then the maximax strategy could be used to rank all
the assets with a high importance given to return in the first case and to the
risk in the second case, and low importance given to all the other attributes.
However, usually an investor wants to maximize the return for a given level
of risk or minimize the risk while attaining the required return level in a

Computational Methods in Finance 31

certain time period. Thus, all the criteria have some influence on the decision.
The decision-maker is asked to input the Shapley value of each criterion,
that is the importance of each criterion relative to other criteria. Since the
attributes are mutually dependent (e.g., higher return usually implies higher
risk, longer time to maturity usually means higher return, etc.), the weighted
sum approach does not promise to give accurate results. However, we can
approximate the interaction indices for each pair of attributes by estimating
the correlation between their values, and use the Choquet integral with respect
to a 2-additive measure, defined by Shapley values and interaction indices of
order 2, to calculate the global value of an asset. The Choquet integral values
are used to order the assets giving higher rank to the assets with the higher
value of the Choquet integral.

Top n assets are chosen to proceed to the second stage of the algorithm.
The number n is either pre-defined by the investor, or all the assets with the
Choquet value above a threshold specified by the investor are selected. We
denote the set of all assets that are used to create portfolio by A. The second
stage of the algorithm tends to find the optimal distribution of wealth among
n selected assets, w = (w1, . . . , wn), by considering another multi-criteria
decision making setting. The set of alternatives is defined as the set of all
possible portfolios using only the assets selected based on their rank. The set
of criteria is unchanged from the first stage of the algorithm. However, the
values of the criteria are defined in terms of their values for each asset in the
portfolio as follows:

• The return of the portfolio is

R(w) =
n∑

i=1

Riwi. (70)

• The risk of the portfolio is

r(w) =
n∑

i=1

riwi. (71)

• Time to maturity of the portfolio, however, is not the weighted sum of the
individual assets’ maturity times. It is the maximum time to maturity of
all assets included in the portfolio:

t(w) = max
j

tj , where j is such that xj ∈ A. (72)

Note that if all assets are included in every portfolio, then the time to
maturity will be same for all portfolios.

• The transaction cost of the portfolio is

c(w) =
n∑

i=1

civi, (73)

32 Magoč et al.

where vi = wi if the transaction cost of the asset i is a proportion of wealth
invested into the asset, and vi = constant s if the transaction cost of the
asset j is equal to s for any amount invested.

• Similarly, the values of other attributes characterizing a portfolio could be
defined in terms of values of individual assets included into the portfolio.

Keeping the same Shapley values for all attributes and interaction indices
of degree 2 for each pair of attributes as given in the first step of the algorithm,
we maximize the Choquet integral of the alternatives. Thus, this stage of the
algorithm reduces to an optimization constraint programming problem that
finds the vector w = (w1, . . . , wn) that maximizes the objective function

max
w

∑

Iij>0

Iij [ui(xi)∧uj(xj)]+
∑

Iij<0

|Iij |·[ui(xi)∨uj(xj)]+
n∑

i=1

ui(xi)− 1

2

n∑

i 6=j

Iij

 .

(74)
Here, xi and xj represent criteria of the portfolio (e.g., risk, return, time to
maturity, etc.), which are defined in terms of wi, and one of the characteristics
of portfolio (ri, Ri, ti, ci, or others).
The maximization problem is subject to the following constraints:

n∑

i=1

wiRi ≥ Ror
n∑

i=1

wiri ≤ r (portfolio satisfies the main goal of the investor);

(75)
n∑

i=1

wi = 1 (exactly all wealth is invested); (76)

wi ≥ 0 ∀i = 1, . . . , n (money can not be borrowed to be invested in an asset).
(77)

This problem involving constraints could be solved using standard opti-
mization techniques. Since all constraints are linear, the choice of the opti-
mization technique depends on the form of the objective function. Using the
simple utility functions described in this section, the objective function is lin-
ear as well, which allows us to use of the simplex method to determine the
optimal solution. However, if some complex utility functions are used to ex-
ecute the multi-criteria decision process, the objective function might not be
linear and other methods, such as Karush-Kuhn-Tucker and Fritz-John, must
be used to find the solution. Since both methods guarantee to find a local
optimum but not the global one, we can iterate the algorithm several times
with different starting points to find a better solution.

To reduce the complexity of the algorithm, we developed another algo-
rithm that utilizes MCDM setting in portfolio selection. It starts by ordering
all assets based only on their risk, and using this ranking it clusters all the
assets into three groups: high, middle, and low risk assets. The clustering is

Computational Methods in Finance 33

performed such that the third of assets with the highest risk constitutes group
1, group 2 contains the middle risk assets, and group 3 is the third of assets
with the lowest risk. Next, we calculate the Choquet integral of each asset
following the same MCDM setting as in the first algorithm. We select top
n1 > 0, n2 > 0, and n3 > 0 assets respectively from high, middle, and low
risk clusters to be included into the portfolio. The values of n1, n2, and n3 are
either all equal and predetermined, or they are such that the values of assets
selected from each cluster are higher than a predefined threshold value.

Based on the investor’s level of risk aversion, the proportion of wealth in-
vested in each cluster is determined and denoted by p1, p2, and p3 respectively
for groups 1, 2, and 3. If the decision-maker is highly risk-averse, p1 will be
much smaller than p2 and p3, while for a risk-prone individual, p3 will be
smaller than p1 and p2. However, none of the numbers will be equal to zero
in order to diversify portfolio, which is necessary to reduce unsystemic risk,
the risk that depends on the company.

Finally, the wealth allocated to each cluster is distributed among the assets
that belong to the group, so that the optimal portfolio is selected. Each cluster
is considered separately from the other two and the best distribution of wealth
is determined by maximizing the Choquet integral of the portfolios built by
selected assets in each group

max
w

∑

Iij>0

Iij [ui(xi)∧uj(xj)]+
∑

Iij<0

|Iij |[ui(xi)∨uj(xj)]+
n∑

i=1

(ui(xi)−1
2

n∑

i 6=j

Iij),

(78)
subject to

n∑

i=1

wi = 1 (exactly all wealth is invested); (79)

wi ≥ 0 ∀i = 1, . . . , n (money can not be borrowed to be invested in an asset).
(80)

Note that this algorithm does not explicitly require satisfaction of the
main goal of the investor (e.g., required return level, maximum risk rate, etc.),
but this requirement is implicitly accounted for in the distribution of wealth
among three clusters. We can again apply one of the standard optimization
techniques to solve this problem.

Even though the utility based multi-criteria decision making setting and
its solution by use of Choquet integral with respect to 2-additive measure is
a feasible and accurate solution for values given by the decision maker, this
approach faces another problem. We cannot expect a decision maker to give
precise values for the importance and interaction indices. In order to overcome
this hurdle, it was shown [3] that the use of intervals provides a nice solution
in MCDM problem.

34 Magoč et al.

7.3 Intervals

Interval Arithmetic (IA) is an arithmetic over sets of real numbers called in-
tervals. It had started the development in fifties in order to model uncertainty,
and to tackle rounding errors of numerical computations. For a complete pre-
sentation of interval arithmetic, we refer the reader to [15].

Definition 6.7. (Interval) A closed real interval is a closed and connected
set of real numbers. The set of closed real intervals is denoted by IR. Every
x ∈ IR is denoted by

[x, x], (81)

where its bounds are defined by x = inf x and x = sup x.
For every a ∈ R, the interval point [a, a] is also denoted by a.

In the following, elements of IR are simply called real intervals or intervals.
The width of a real interval x is the real number w(x) = x−x. Given two

real intervals x and y, x is said to be tighter than y if w(x) ≤ w(y).
Interval Arithmetic operations are set theoretic extensions of the corre-

sponding real operations. Due to properties of monotonicity, these operations
can be implemented by real computations over the bounds of intervals. Given
two intervals x = [a, b] and y = [c, d], we have for instance:

x + y = [a + c, b + d]

x − y = [a− d, b− c]

x × y = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]

xn =

[an, bn] if n is an odd natural number
[0, max{|a|, |b|}n] if n is even and 0 ∈ [a, b]
[min{|a|, |b|}n,max{|a|, |b|}n] if n is even and 0 6∈ [a, b]

The associative law and the commutative law are preserved over IR. However,
the distributive law does not hold. In general, only a weaker law is verified,
called semi-distributivity. For all x,y, z ∈ IR, we have:

associativity: (x + y) + z = x + (y + z)
(xy)z = x(yz)

commutativity: (x + y) = (y + x)
xy = yx

sub-distributivity: x× (y + z) ⊆ x× y + x× z

Computational Methods in Finance 35

Intervals of preferences

As mentioned earlier, to define preferences over multi-dimensional alterna-
tives, the user is required to provide importance and interaction indices, but
is more likely to provide intervals of values Ii and Iij , ∀i, j ∈ {1, . . . , n}, which
leads to evaluation of a Choquet integral over intervals using IA:

(CI)
∫

I

fdµ =
∑

Iij>0

(
(f(i) ∧ f(j))− 1

2
(f(i) + f(j))

)
Iij

+
∑

Iij<0

(
(f(i) ∨ f(j))− 1

2
(f(i) + f(j))

)
|Iij |

+
n∑

i=1

f(i)Ii

where the annotation (CI) means that the interpretation of this formula is
performed using IA. As a consequence, the value of the integral is an interval.

Back to the Portfolio Optimization Problem

Intervals allow the problem of portfolio management to be presented more
realistically as the investor is asked to provide the ranges of values of the
importance and interaction indices of order 2 instead of the exact values. It
is reasonable to believe that an investor can determine whether, for exam-
ple, minimization of risk is more important than the return from an asset,
or whether the time period in which an amount can be obtained is more im-
portant than risk. However, it is more realistic that the investor can give the
interval of how much one criterion is more important than the other crite-
rion rather than giving the exact values of the relative importance among
criteria. Thus, the intervals provide a rational way to solve the portfolio opti-
mization problem by following the same procedures as the non-interval based
methods and evaluating the Choquet integral over intervals and extending
the optimization techniques to intervals as well. However, a new issue arises
when using intervals to evaluate alternatives: the result of the Choquet inte-
gral evaluated over intervals is an interval, and intervals are not as easy to
compare as real numbers.

Strategies of preference

When comparing intervals, the ideal case is when the intervals of preferences
do not intersect. In this case, if alternative I is evaluated with values that are
all better than those of alternative J , the preference is clearly given to the
alternative I.

36 Magoč et al.

However, the above case is very specific and unfortunately does not happen
often. More common is that two intervals intersect and we need to choose a
better of two overlapping intervals. The strategies to make decisions in such
cases are described below.

A simple naive strategy offers a straightforward solution that compares
only the upper bounds and gives the preference to the interval with the highest
upper bound (which corresponds to an optimistic behavior of a decision-maker
as he/she is only interested in the highest potential values rather than all
the values that could be reached), or compares the lower bounds and gives
preference to the highest lower bound (which corresponds to a pessimistic
behavior).

However, many alternatives between the very optimistic case and the very
pessimistic case are possible. They require us to look simultaneously at the
upper and lower bounds as well as the width of the intervals, which highlights
the degree of uncertainty of the alternative’s value. To combine these variables,
a degree of preference was introduced [3]. A degree of preference, d(I, J),
intended to express the extent to which a better value of the Choquet integral
is likely to lie in interval I, rather than in interval J .

It is defined as a function d : I2 → [0, 1], where:

d(I, J) =

I−J
|(I−J)+(J−I)| if I > J and J ≥ I

1 if I = J and I > J
or: if I > J and I ≥ J
or: if I = J and I = J

1− d(J, I) otherwise

(82)

The higher the value of the degree of preference, the greater the chance that
the optimal interval is the interval I, while lower value of the degree of pref-
erence implies that the interval J would more likely contain higher value of
Choquet integral.

The degree of preference, as described above, assumes that a decision-
maker is risk-neutral, that is the person is not willing to undergo an extreme
risk nor he/she believes that there is a reason to be too careful. However,
sometimes, a person exhibits a risk-prone attitude and leans towards opti-
mistic behavior, or on the other hand, the decision-maker could be more
risk-averse especially if there is a reason to expect pessimistic results. If a
decision-maker could provide the level of risk that he/she is willing to take in
order to maximize the utility, then we can modify the degree of preference to
include this fact.

Let us assume that the level of risk a person wants to take is expressed by
a real value in the interval [0, 1], where naturally, values close to 0 represent
pessimistic situations, and values closer to 1 mean more optimistic expecta-

Computational Methods in Finance 37

tions. Now, we can tighten the considered interval to better suit this level of
risk. The shrinking of the interval [X,X] based on the risk level r ∈ [0, 1] is
done in the following way [21]:

• First, calculate the proportion of the interval that is considered important
by the decision-maker:

p = 2 ·min{r − 0, 1− r}. (83)

• Next, calculate the size of the interval that corresponds to the given pro-
portion:

size = p · (X −X). (84)

• Finally, calculate the interval of importance, [N, N]:

[N, N] =

{
[X,X + size] if r ≤ 0.5

[X − size, X] otherwise
(85)

This approach clearly returns a single point instead of an interval in cases
when the level of risk is at extreme points, i.e., the interval of importance
is the upper bound of the original interval when the risk level is 1, and the
lower bound when the risk level is 0. In both cases, the problem is reduced
to comparison of single (extreme) points rather than intervals, the situation
that corresponds to the naive strategy.

Once we have tightened the intervals to reflect the level of risk the decision-
maker is willing to take, we apply equation (82) to new intervals of importance
to calculate the degree of preference, which determines the better of two in-
tervals.

The presented approach to determine the better of two intervals given the
level of risk works well if the decision-maker can provide the exact degree of
risk he/she is willing to take. However, in reality it is hard to describe the
level of risk by a single number [21]. More probable is that a person could
define the level of risk by an interval r = [r, r]. In this case, the calculation
of the interval of importance that encounters for the optimism/pessimism of
a person is a bit more complicated. Instead of a precise interval, the result is
an interval whose bounds are themselves intervals (2nd order interval), and
therefore, the degree of preference would result in an interval, d(I, J) = [d, d]
rather than a single number. Three situations could occur:

• d < 0.5 in which case the preferable choice is interval J .
• d > 0.5 in which case the preferable choice is interval I.
• 0.5 ∈ [d, d] in which case the preferable choice is

(1) interval I if (d− 0.5) ≥ (0.5− d)

(2) interval J otherwise.

38 Magoč et al.

All of the above rankings of intervals suppose uniform probability distri-
bution, which is a reasonable assumption if no additional information is avail-
able. However, sometimes more information is accessible and more accurate
probability distribution over an interval could be considered. Typically, if the
width of interval is not limited, it is common that a decision-maker would give
an interval bigger than what he/she really believes the interval should be to
cover any possible extreme value even though the extreme values would very
rarely happen. Thus, it is not uncommon that the values within an interval
would not follow uniform distribution, but rather a form of Gaussian distri-
bution (possibly screwed). In this situation, it is reasonable to assume that
the interval Choquet integral would also not follow uniform distribution but
would rather have higher probability of values in the interior of the interval
than those close to bounds.

In the case when more information is available about probability distribu-
tion over an interval, we can slightly modify the approach of calculating the
degree of preference [21]. As before, we start by tightening the given interval
based on the level of risk, r, that a person is willing to take. Thus, we need
to determine the value, s, within the given interval [X, X] such that

s =

{
P (x ≤ 2r) if r < 0.5

P (x ≥ (2r − 1)) if r > 0.5
(86)

So the interval of importance is:

[N, N] =

{
[X,X + s] if r ≤ 0.5

[X − s,X] otherwise
(87)

Note that the above formula when applied to the uniform distribution
leads exactly to the equation (85), with s replacing the variable size.

The next step is to calculate the degree of preference between two intervals
given their new bounds. Encountering the probability distribution, the degree
of preference is given by:

d(I, J) =

P (J≤x≤I)

P (J≤x≤I)+P (I≤x≤J)
if I > J and J ≥ I

1 if I = J and I > J
or: if I > J and I ≥ J
or: if I = J and I = J

1− d(J, I) otherwise

(88)

When applied to uniform distribution, this equation simplifies to equation
(82).

Computational Methods in Finance 39

Back to the Portfolio Optimization Problem

Even though the presented utility-based approach to decision making has not
yet been tested on real data, the theoretical framework is sound and general
enough to be applied successfully to real finance data sets. Its performance
could be tested against the performance of benchmark portfolios, and there
is no doubt that the approach would perform superiorly compared to these
techniques as fuzzy integration over intervals adjusts the drawbacks of other
commonly used intelligent techniques, which outperform benchmark portfo-
lios themselves. Thus, this method offers a natural and logical framework to
optimize portfolio selection.

8 Conclusion

Computational intelligence techniques are very useful for solving problems
involving the understanding, modeling and analysis of large data sets. Very
often, trying to take all variables into considerations, along with variable de-
pendencies is not practical, as this approach rapidly becomes untractable,
even if using distributed computing techniques. On the other hand, humans
are very efficient at identifying what matters, and discarding what does not
matter in a given situation. Computational intelligence techniques are pre-
cisely replicating this process of eliminating the ’noise’ and focusing on the
data that matter.

We have seen that finance is an area that is well-suited for computational
intelligent approaches. We have presented a state of the art on computational
techniques for portfolio management, that is, how to optimize a portfolio
selection process. More specifically, we have shown that genetic algorithms,
rule-based systems, neural networks, and support vector machines offer some
advantages to benchmark portfolio management schemes, be it in complexity
or in accuracy. We then proceeded to show that a utility-based approach to
decision making offers a natural and logical framework to optimize portfolio
selection, and have shown how the Choquet integral (which generalizes a large
class of aggregation operators in multi-criteria decision making), constraint
programming, and interval computation can be used to solve such problems,
and allow us to deal with both uncertain and imprecise data. This approach
has not been tested yet on real data, however, the theoretical framework is
sound and general enough to be applied successfully to real finance data sets.
Moreover, it addresses some of the issues pertaining to other computational
technique approaches, such as overfitting of parameters, description of the
dependencies between characteristics of an asset, imprecise data, etc.

Last, although we have focused on portfolio management problems, it is
quite possible to use similar computational technique approaches to pricing
problems, as an alternative to the more traditional stochastic differential equa-
tions and stochastic integration approaches.

40 Magoč et al.

References

1. Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992) A training algorithm
for optimal classifiers. In: D. Haussler (Editor) 5th Annual ACM Workshop on
COLT, 144-152, ACM Press, Pittsburgh, PA.

2. Casas, C. A. (2001) Tactical asset allocation: an artificial neural network based
model. Proceedings of International Joint Conference on Neural Networks,
3:1811-1816.

3. Ceberio, M. and Modave, F. (2006) Interval-based multicriteria decision mak-
ing. In: B. Bouchon-Meunier, G. Coletti, and R. R. Yager (Editors) Modern
Information Processing: from Theory to Applications. Elsevier ed.

4. Chapados, N. and Bengio, Y. (2001) Cost functions and model combination for
VaR-bsed asset allocation using neural networks. IEEE Transactions on Neural
Networks, 12:890-906.

5. Choquet, G. (1953) Theory of capacities. Annales de l’Institut Fourier, 5.
6. Cohen, P. R. and Lieberman, M. D. (1990) A report on FOLIO: an expert

assistant for portfolio managers. Investment Management: Decision Support and
Expert Systems, 135-139.

7. Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning,
20.

8. Denneberg, D. and Grabisch, M. (1996) Shapley value and interaction index.
Mathematics of interaction index.

9. Fan, A. and Palaniswami, M. (2001) Stock selection using support vector ma-
chines. Proceedings of International Joint Conference on Neural Networks,
3:1793-1798.

10. Giarratano, J. and Riley, G. (1994) Expert systems: principles and program-
ming. PWS Publishing Company, Boston, MA.

11. Goldberg, D. E. (1989) Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, MA.

12. Grabisch, M. (2000) The interaction and Mobius representation of fuzzy mea-
sures on finite spaces, k-additive measures: a survey. In: M. Grabisch, T. Muro-
fushi, and M. Sugeno (Editors) Fuzzy measures and integrals: Theory and ap-
plications. Physica Verlag.

13. Grabisch, M. and Roubens, M. (2000) Application of the Choquet integral in
multicriteria decision making. In: M. Garbisch, T. Murofushi, and M. Sugeno
(Editors) Fuzzy Measures and Integrals: Theory and Applications. Physica Ver-
lag.

14. Haupt, R. L. and Haupt, S. E. (2004) Practical Genetic Algorithms (2ndedition).
Wiley, New York.

15. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001) Applied Interval Anal-
ysis, with Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer-Verlag, London.

16. Joshi, M. (2003) The concepts and practice of mathematical finance. Cambridge.
17. Krantz, D., Luce, R., Suppes, P., and Tverski, A. (1971) Foundations of mea-

surement. Academic Press.
18. Lai, K. K., Yu, L., Wang, S., and Zhou, C. (2006) A double-stage genetic op-

timization algorithm for portfolio selection. I. King et al. (Editors): ICONIP
2006, part III, LNCS 4234:928-937. Springer-Verlag Berlin Heidelberg.

Computational Methods in Finance 41

19. Lin, L., Cao, L., Wang, J., and Zhang, C. (2004) The applications of genetic
algorithms in stock market data mining optimization. In: A. Zanasi, N. F. F.
Ebecken, and C. A. (Editors) Data Mining V, WIT Press.

20. Lowe, D. (1994) Novel exploitation of neural network methods in financial mar-
kets. IEEE International Conference on Neural Networks, 6:3623-3628.

21. Magoc, T., Ceberio, M., and Modave, F. (2008) Interval-based multi-criteria
decision making: strategies to order intervals. Proceedings of North American
Fuzzy Information Processing Spciety.

22. Modave, F. and Grabisch, M. (1997) Preferential independence and the Choquet
integral. 8th International Conference on the Foundations and Applications of
Decision Under Risk and Uncertainty, Mons, Belgium.

23. Nilsson, N. J. (1998) Artificial intelligence: a new synthesis. Morgan Kaufman.
24. Prugel-Bennett, A. and Shapiro, J. L. (1994) An analysis of genetic algorithms

using statistical mechanics. Physycal Review letters, 72(9) 1305-1309.
25. Reeves, C. R. and Rowe, J. E. (2003) Genetic algorithms-Principles and Per-

spective: A Guide to GA Theory. Kluwer Academic Publisher, London.
26. Shapley, L. S. (1953) A value for n-person games. In: H. W. Kuhn and A. W.

Tucker (Editors) Contributions to the Theory of Games, 2:307-317. Princeton
University Press.

27. Sugeno, M. (1974) Theory of fuzzy integrals and its applications. PhD Thesis,
Tokyo Institute of Technology.

28. Schlkopf, B., Burges, C., and Vapnik, V. (1995) Extracting support data for a
given task. Advances in Neural Information Processing Systems.

29. Seo, Y., Giampapa, J., and Sycara, K. (2004) Financial news analysis for intelli-
gent portfolio management. Tech. report CMU-RI-TR-04-03, Robotics Institute,
Carnegie Mellon University.

30. Sycara, K., Decker, K., and Zeng, D. (1998) Intelligent agents in portfolio man-
agement. In: N. Jennings and M. Wooldridge (Editors) Agent Technology: Foun-
dations, Applications, and Markets. Springer.

31. Tan, P., Steinbach, M., and Kumar, V. (2006) Introduction to data mining.
Addison Wesley.

32. Zhou, C., Yu, L., Huang, T., Wang, S., and Lai, K. K. (2006) Selecting valuable
stocks using genetic algorithm. T.-D. Wang et al. (Editors): SEAL 2006, LNCS
4247, pp. 688-694. Springer-Verlag Berlin Heidelberg.

33. Zimmermann, H. G. and Grthmann, R. (2005) Optimal asset allocation for a
large number of investment opportunities. Intelligent systems in Accounting,
Finance, and Management, 13:33-40.

34. Zimmermann, H. G., Neuneier, R, and Grthmann, R. (2002) Active portfolio
management based on error correction neural networks. Proceedings of Neural
Network Information Processing systemns, Vancouver, Canada.

