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Tanja Magoč, Martine Ceberio, and François Modave
University of Texas at El Paso
Computer Science Department
500 West University Avenue
El Paso, Texas 79968-0518
tmagoc@miners.utep.edu,

{mceberio,fmodave}@utep.edu

Abstract—Ordering alternatives in interval-based multi-
criteria decision making problems is not a trivial task when the
intervals of preference are overlapping. In this paper, we aim
at giving a rational and natural way of ranking alternatives by
computing the degrees of preference, taking into consideration
the upper and lower bounds of the interval of preference as
well as its width. We slightly modify the general description of
degree of preference to accommodate the strategy of choice for
risk-prone and risk-averse individuals as well as situations where
more information is available (e.g., a probability distribution over
the intervals).

I. INTRODUCTION

In multi-criteria decision making (MCDM), the goal is to
order multi-dimensional alternatives so that the order is con-
sistent with the decision maker’s preferences. The traditional
approaches to aggregate all dimensions of an alternative into
a single value, which are based on additive methods, fail
in general, as they have to rely on independence properties
(e.g., mutual preferential independence [8]) that are usually
not satisfied. The authors have proposed an extension based
on the Choquet integral (a non-addtive integral) with respect to
a 2-additive measure. The decision maker is asked to provide
values of importance for each criterion as well as interaction
indices of degree 2 and the Choquet integral is computed from
these values using a reconstruction formula provided in [5].

Nevertheless, this approach faces a common hurdle: the
decision maker is asked to provide subjective and precise
values of importance of each criterion and interaction indices
among criteria. Practically, it is unlikely that the decision
maker can give precise values for these indices. However, we
can reasonably expect the decision maker to be able to give
ranges of required values.

Intervals are a natural approach to solve the issue of impre-
cise weights given by the decision-maker to different criteria.
However, they bring a new difficulty: comparing intervals
may not be as straightforward as comparing real numbers, so
strategies to order intervals must be given.

Another issue we face when ordering intervals is that we
would like to be able to represent a risk-prone or a risk-averse
behavior. Intuitively, a risk-averse decision maker would be
more interested in the lower values of the interval whereas a
risk taker will be willing to consider only the higher values,

representing an increased risk, for an increased profit. We
expect a decision maker to have a stand of how much risk
he/she is willing to take, and again, it is more reasonable to
expect that the level of risk be given in terms of an interval
rather than a single number.

The aim of this paper is to present general strategies to
order intervals, which result from calculating interval-valued
Choquet integrals to represente the global values of multi-
dimensional alternatives.

In the first part of this paper, we recall the essentials of
MCDM and non-additive integration, mostly in the discrete
case, basics of intervals, and how to combine these theories to
obtain interval of preferences in a MCDM setting. Then, we
present strategies of choice between intervals of preferences,
and we describe how to integrate other available information,
such as the level of risk the decision maker is willing to
accept and probabilistic information, in the decision. Finally,
we present a simple application that uses the tools presented
in the paper to reach the best solution.

II. MULTI-CRITERIA DECISION MAKING

A multicriteria decision making problem could be defined
as a triple (X, I, (�i)i∈I) where

• X ⊂ X1 × · · · × Xn is the set of alternatives with each
set Xi representing a set of values of the attribute i.

• I is the (finite) set of criteria (or attributes).
• ∀i ∈ I , �i is a preference relation (a weak order) over

Xi.
The next task is to “combine” the preference relations �i in
a rational way, in agreement with the decision maker’s partial
preferences.

The natural way to construct a global preference is by using
utility function for each attribute to reflect partial preferences
of a decision-maker, and then combine these monodimensional
utilities into a global utility function using an aggregation
operator. The existence of monodimensional utility functions
is guaranteed under relatively loose hypotheses by the work
presented in ([8]).

The simplest method for combining monodimensional
utilities is a weighted sum approach, in which the decision
maker is asked to provide weights that reflect the importance



of each criterion. Even though this approach is attractive due
to its low complexity, it can be shown that using an additive
aggregation operator, such as weighted sum, is equivalent
to assuming that all the attributes are independent ([9]). In
practice, this is not realistic and therefore, we need to turn to
non-additive approaches, that is to aggregation operators that
are not linear combinations of partial preferences.

Definition 1. (Non-additive measure) Let I be the set of
attributes and P(I) the power set of I . A set function
µ : P(I) → [0, 1] is called a non-additive measure (or fuzzy
measure) if it satisfies the following three axioms:

(1) µ(∅) = 0 : the empty set has no importance.
(2) µ(I) = 1 : the maximal set has maximal importance.
(3) µ(B) ≤ µ(C) if B, C ⊂ I and B ⊂ C: a new criterion

added cannot make the importance of a coalition (a set
of criteria) diminish.

Of course, any probability measure is also a non-additive
measure. Therefore non-additive measure theory is an ex-
tension of traditional measure theory. Moreover, a notion of
integral can also be defined over such measures.

A non-additive integral, such as the Choquet integral ([3]),
is a type of a general averaging operator that can model the
behavior of a decision maker. The decision-maker provides a
set of values of importance, this set being the values of the
non-additive measure on which the non-additive integral is
computed from.

Formally, The Choquet integral is defined as follows:

Definition 2. (Choquet integral) Let µ be a non-additive
measure on (I,P(I)) and an application f : I → R

+. The
Choquet integral of f w.r.t. µ is defined by:

(C)
∫

I

fdµ =
n∑

i=1

(f(σ(i)) − f(σ(i − 1)))µ(A(i)),

where σ is a permutation of the indices in order to have
f(σ(1)) ≤ · · · ≤ f(σ(n)), A(i) = {σ(i), . . . , σ(n)}, and
f(σ(0)) = 0, by convention.

It can be shown that many aggregation operators can be
represented by Choquet integrals with respect to some fuzzy
measure. Note that there are other non-additive approaches
to decision making besides the Choquet integral, one of them
being the Sugeno integral ([12]):

Definition 3. (Sugeno integral) Let µ be a fuzzy measure on
(I,P(I)) and an application f : I → [0,+∞]. The Sugeno
integral of f w.r.t. µ is defined by:

(S)
∫

f ◦ µ =
n∨

i=1

(f(x(i)) ∧ µ(A(i))).

where ∨ is the supremum and ∧ is the infimum.

Even though the Choquet and the Sugeno integrals are
structurally similar, their applications are very different. The
Choquet integral is generally used in quantitative measure-
ments, while Sugeno integral has found more applications
in qualitative approaches. For the purpose of this paper, we
restrict ourselves to quantitative approaches.

Although the Choquet integral is well suited for quantitative
measurements, it has a major drawback. We need a decision
maker to input a value of importance of each subset of
attributes, which leads to an exponential complexity and is
therefore intractable. We can overcome intractability by using
2-additive measure to limit the complexity to a O(n2) (as
shown in [2]).

Before giving the definition of 2-additive measure, we need
to define notion of interaction indices of orders 1 and 2. The
importance of an attribute (or the interaction index of degree
1) is best described as the value this attribute brings to each
coalition it does not belong to. It is given by the Shapley
value ([11]):

Definition 4. (Shapley value) Let µ be a non-additive measure
over I . The Shapley value of index j is defined by:

v(j) =
∑

B⊂I\{j}
γI(B)[µ(B ∪ {j}) − µ(B)]

with γI(B) = (|I|−|B|−1)!·|B|!
|I|! and |B| denoting the cardinal

of B.

While the Shapley value gives the importance of a single
attribute to the entire set of attributes, the interaction index
of degree 2 represents the interaction among two attributes,
and is defined by ([4],[6]):

Definition 5. (Interaction index of degree 2) Let µ be a non-
additive measure over I . The interaction index between i and
j is defined by:

I(i, j) =
∑

B⊂I\{i,j} ( ξI(B) · (µ(B ∪ {i, j})

−µ(B ∪ {i}) − µ(B ∪ {j}) + µ(B))

with ξI(B) = (|I|−|B|−2)!·|B|!
(|I|−1)! .

The interaction indices belong to the interval [−1,+1] and

• I(i, j) > 0 if the attributes i and j are complementary;
• I(i, j) < 0 if the attributes i and j are redundant;
• I(i, j) = 0 if the attributes i and j are independent.

Even though we can define interaction indices of any
order, defining the importance of attributes and the interaction
indices between two attributes is generally enough in MCDM
problems. Thus, 2-additive measures constitute a feasible
and accurate tool in this setting. The formal definition of
2-additive measure follows ([4]):



Definition 6. (2-additive measure) A non-additive measure
µ is called 2-additive if all its interaction indices of order
equal to or larger than 3 are null and at least one interaction
index of degree two is not null.

We can also show ([5]) that the Shapley values and the
interaction indices of order two offer us an elegant way to
represent a Choquet integral. Therefore, in a decision-making
problem, we can ask the decision maker to give the Shapley
values, Ii, and the interaction indices, Iij , and then use the
Choquet integral w.r.t. to a 2-additive measure, µ, to obtain
the aggregation operator:

(C)
∫

I

fdµ =
∑

Iij>0

(f(i) ∧ f(j))Iij

+
∑

Iij<0

(f(i) ∨ f(j))|Iij |

+
n∑

i=1

f(i)(Ii − 1
2

∑
j �=i

|Iij |).

Nevertheless, this approach raises another problem. We can-
not expect a decision maker to give precise values for the
importances and interaction indices. In order to overcome this
hurdle, it was shown ([2]) that the use of intervals provides a
nice solution.

III. INTERVALS

Interval Arithmetic (IA) is an arithmetic over sets of real
numbers called intervals. It has been studied since late fifties
in order to model uncertainty and to tackle rounding errors
of numerical computations. For a complete presentation of
interval arithmetic, we refer the reader to ([1],[7]).

Definition 7. (Interval) A closed real interval is a closed
and connected set of real numbers. The set of closed real
intervals is denoted by IR. Every x ∈ IR is denoted by [x, x],
where its bounds are defined by x = inf x and x = supx.
For every a ∈ R, the interval point [a, a] is also denoted by
a.

In the following, elements of IR are simply called real
intervals or intervals.

The width of a real interval x is the real number w(x) =
x−x. Given two real intervals x and y, x is said to be tighter
than y if w(x) ≤ w(y).

A. Intervals of preferences

As mentioned earlier, to define preferences over multi-
dimensional alternatives, the user is required to provide im-
portance and interaction indices, but is more likely to provide
intervals of values Ii and Iij , i, j ∈ {1, . . . , n}, which leads
to evaluation of a Choquet integral over intervals using IA.

However, an issue arises when using intervals to evaluate
alternatives: intervals are not as easy to compare as real
numbers.

IV. STRATEGIES OF PREFERENCE

When comparing intervals, the ideal case is when the inter-
vals of preferences do not intersect. In this case, if alternative
I is evaluated with values that are all better than those of
alternative J , the preference is clearly given to the alternative
I .

However, the above case is very specific and unfortunately
does not happen often. More common is that two intervals
intersect and we need to choose a better of two overlapping
intervals. The following sections describe strategies to make
decisions in such cases.

A. Naive strategy

A straightforward solution consists in comparing only the
upper bounds and giving the preference to the interval with
highest upper bound (which corresponds to an optimistic
behavior of a decision-maker as he/she is only interested in the
highest potential values rather than all the values that could be
reached) or comparing the lower bounds and giving preference
to the highest lower bound (which corresponds to a pessimistic
behavior).

However, many alternatives between the very optimistic
case and the very pessimistic case are possible. They require
us to look simultaneously at the upper and lower bounds as
well as the width of the intervals, which highlights the degree
of uncertainty of the alternative’s value. To combine these
variables, a degree of preference was introduced ([2]).

B. Degree of preference and strategy of preference

A degree of preference, d(I, J), intended to express the
extent to which a better value of the Choquet integral is likely
to lie in interval I , rather than in interval J .

It is defined as a function d : I
2 → [0, 1], where:

d(I, J) =




I−J
|(I−J)+(J−I)| if I > J and J ≥ I

1 if I = J and I > J
or: if I > J and I ≥ J
or: if I = J and I = J

1 − d(J, I) otherwise
(1)

The higher the value of the degree of preference, the greater
the chance that the optimal interval is the interval I , while
lower value of the degree of preference implies that the interval
J would more likely contain higher value of Choquet integral.

C. Level of Risk a Person is Willing to Take

The degree of preference, as described above, assumes that a
decision-maker is risk-neutral, that is the person is not willing
to undergo an extreme risk nor he/she believes that there is
a reason to be too careful. However, sometimes, a person
exhibits a risk-prone attitude and leans towards optimistic
behavior, or on the other hand, the decision-maker could be



more risk-averse especially if there is a reason to expect
pessimistic results. If a decision-maker could provide the level
of risk that he/she is willing to take in order to maximize the
utility, then we can modify the degree of preference to include
this fact.

Let us assume that the level of risk a person wants to take is
expressed by a real value in the interval [0, 1], where naturally,
values close to 0 represent pessimistic situations, and values
closer to 1 mean more optimistic expectations. Now, we can
tighten the considered interval to better suit this level of risk.
The shrinking of the interval [X,X] based on the risk level
r ∈ [0, 1] is done in the following way:

• First, calculate the proportion of the interval that is
considered important by the decision-maker:

p = 2 · min{r − 0, 1 − r}. (2)

• Next, calculate the size of the interval that corresponds
to the given proportion:

size = p · (X − X). (3)

• Finally, calculate the interval of importance, [N,N ]:

[N,N ] =

{
[X,X + size] if r ≤ 0.5

[X − size,X] otherwise
(4)

This approach clearly returns a single point instead of an
interval in cases when the level of risk is at extreme points, i.e.,
the interval of importance is the upper bound of the original
interval when the risk level is 1, and the lower bound when
the risk level is 0. In both cases, the problem is reduced to
comparison of single (extreme) points rather than intervals, the
situation that corresponds to the naive strategy.

Once we have tightened the intervals to reflect the level
of risk the decision-maker is willing to take, we apply
equation (1) to new intervals of importance to calculate the
degree of preference, which determines better of two intervals.

Example 1. To demonstrate the advantage of calculating the
degree of preference over intervals of importance rather than
over the intervals that do not take into consideration the level
of risk a decision-maker is willing to take, we look at a
simple hypothetical example. Let us assume that the interval
based Choquet integral resulted in the intervals [I, I] = [0, 10]
and [J, J ] = [6, 9] for two different alternatives, I and J ,
respectively. If a person making the decision is risk neutral,
it is intuitive that this person would prefer alternative J for
two reasons. First, the interval corresponding to alternative
J is tighter than that of alternative I , which leads to less
uncertainty. Second, the amount that alternative I could bring
higher than alternative J is small in comparison to the lower
values that alternative I could result in. Besides intuitive
reasoning, we can show this by calculating the degree of
preference:

d(I, J) =
10 − 9

|10 − 9| + |6 − 0| =
1
7
≈ 0.143,

which tells us that interval corresponding to alternative I is
less preferable than the interval related to alternative J .

However, if we consider a decision-maker who exhibits
an optimistic behavior, say at a level of 0.9, intuitively this
person does not worry about the low values that could possibly
result from calculating interval Choquet integral, and thus, it
might look that the better option is the alternative I since
it could result in higher value of utility. We can show this
by calculating the interval of importance for intervals of both
alternatives, and then calculating the degree of preference over
these intervals.

Thus, we first obtain the intervals of importance NI =
[8, 10] and NJ = [8.4, 9]. Then, we calculate the degree of
preference over the alternatives I and J using the intervals
NI and NJ :

d(I, J) =
10 − 9

|10 − 9| + |8.4 − 8| =
1

1.4
≈ 0.714,

which clearly indicates the preference of alternative I .
With this example, we showed how the level of risk a person

would accept to take can change the preferability of an interval
over another. It also shows that the proposed method is in an
agreement with the intuitive behavior.

D. Level of Risk Expressed as an Interval

The presented approach to determine the better of two
intervals given the level of risk works well if the decision-
maker can provide the exact degree of risk he/she is willing
to take. However, in reality it is hard to describe the level
of risk by a single number. More probable is that a person
could define the level of risk by an interval r = [r, r]. In
this case, the calculation of the interval of importance that
encounters for the optimism/pessimism of a person is a bit
more complicated. Instead of a precise interval, the result is
an interval whose bounds are themselves intervals (2nd order
interval), and therefore, the degree of preference would result
in an interval, d(I, J) = [d, d] rather than a single number.
Three situations could occur:

• d < 0.5 in which case the preferable choice is interval
J .

• d > 0.5 in which case the preferable choice is interval I .
• 0.5 ∈ [d, d] in which case the preferable choice is

(1) interval I if (d − 0.5) ≥ (0.5 − d)

(2) interval J otherwise.

To see the benefit of this approach, let us go back to
Example 1., and consider an interval of the level of risk
rather than a single number.

Example 2. Assume that the person could not give us a precise
level of risk, but rather an interval, say [0.8,0.9]. Intuitively,
it’s not clear anymore what the person should do since there
is still an optimistic behavior, but it’s not high enough to
easily determine the interval of preference. In this case, we
follow the procedure to calculate the degree of preference



for both upper and lower bounds of the interval of risk, and
end up with two different degrees of preference. Using the
lower bound of the risk level 0.8, the degree of preference is:
d = 10−9

|10−9|+|7.8−6| = 1
2.8 ≈ 0.357, while using the upper

bound of the level of risk 0.9, we obtain d ≈ 0.714 as
calculated in the first example. Thus, the degree of preference
belongs to the interval [0.357, 0.714]. This interval shows that
there is a higher probability that the exact value would be
above 0.5. Thus, the preferable choice is the alternative I .

This example clearly illustrates that in some situations, it is
not easy to just look at two intervals and determine the better
one. It also explains how the level of risk a decision maker is
willing to take can be taken into consideration to determine
the best alternative.

E. Considering Different Probability Distributions

All of the above rankings of intervals suppose uniform
probability distribution, which is a reasonable assumption if
no additional information is available. However, sometimes
more information is accessible and more accurate probability
distribution over an interval could be considered. In this case,
we can slightly modify the approach of calculating the degree
of preference.

As before, we start by tightening the given interval based
on the level of risk, r, that a person is willing to take. Thus,
we need to determine the value, s, within the given interval
[X,X] such that

s =

{
P (x ≤ 2r) if r < 0.5

P (x ≥ (2r − 1) if r > 0.5
(5)

So the interval of importance is:

[N,N ] =

{
[X,X + s] if r ≤ 0.5

[X − s,X] otherwise
(6)

Note that the above formula when applied to the uniform
distribution leads exactly to the equation (4), with s replacing
the variable size.

The next step is to calculate the degree of preference
between two intervals given their new bounds. Encountering
the probability distribution, the degree of preference is given
by:

d(I, J) =




P (J≤x≤I)

P (J≤x≤I)+P (I≤x≤J)
if I > J and J ≥ I

1 if I = J and I > J
or: if I > J and I ≥ J
or: if I = J and I = J

1 − d(J, I) otherwise
(7)

When applied to uniform distribution, this equation simplifies
to equation (1).

Remark. According to the approach we presented in
this paper, a decision-maker is asked to give intervals of

importance of each attribute and interaction indices between
each two criteria. In many situations, if the width of interval
is not limited, it is common that a decision-maker would
give an interval bigger than what he/she really believes
the interval should be to cover any possible extreme value
even though the extreme values would very rarely happen.
Thus, it is not uncommon that the values within an interval
would not follow uniform distribution, but rather a form of
Gaussian distribution (possibly screwed). In this situation,
it is reasonable to assume that the interval Choquet integral
would also not follow uniform distribution but would rather
have higher probability of values in the interior of the interval
than those close to bounds.

Example 3. Let us see how the knowledge of probability
distribution could influence the ordering of alternatives. For
this purpose, we revisit Example 1, with the assumption that
the intervals resulting from Choquet integrals follow normal
distribution. Also, assume that the interval for alternative I has
mean µI = 5 and standard deviation σI = 10

3 so that almost
100% of the values fall within the interval [0, 10]. For same
reason, assume that the interval corresponding to alternative
J has mean µJ = 7.5 and standard deviation σJ = 1

2 .
Following the normal distribution tables, the intervals of

importance for the decision-maker’s risk level of 0.9 are the
following:

NI = [6.4, 10] and NJ = [7.92, 9].

To calculate the degree of preference, we use the character-
istics of the distribution corresponding to alternative I since
only the alternative I covers the possibility of having values
in the intervals [9, 10] and [6.4, 7.92] The degree of preference
is then equal to:

d = 0.129

which clearly indicated that the alternative J is better choice.
This result might not be intuitive at first, but if we think for
a moment and realize that the alternative I could bring better
result only when value of utility is greater than 9, which is the
tiny tail of a normal distribution, it is clear that this situation
would not happen very often.

V. AN EXAMPLE OF APPLICATION

In this section, we present a simplified example from the
world of finance that benefits from the approach presented
in the paper. Buying bonds is a common method to earn
interest on the money invested. However, there are thousands
of bonds in a market, which represent alternatives in multi-
criteria decision making problem. Selecting the best bond is
not an easy task, and the choice is different depending on the
goal of the investor.

Each bond is characterized by several attributes, but we will
limit ourself to consideration of only two—the return rate
(earning) and the time to maturity (the length of time until
the moment when the invested money will be return to the
investor along with the interest earned). The return and the



maturity time tend to move in the same direction—longer the
time to maturity usually leads to the higher expected return—
so these two criteria cannot be considered independent. For
this reason, the Choquet integral is a good choice for the
aggregation operator to combine the values of the return and
the time to maturity into a global value of the bond.

In the problem of bond selection, the Shapley values of
the return and the time to maturity represent the importance
of the each criterion for the investor. In the other words, the
investor decides whether the level of the return or the time
to maturity should carry bigger weight. For example, if the
investor wants to have money available for use in neat future,
he/she will give higher Shapley value to the maturity time
than to the return rate. The interaction index of degree 2
between two criteria is determined by the correlation between
their behaviors. In the case of two attributes considered in
this example, the interaction index will have negative value
since they are redundant criteria. Of course, it is almost
impossible for an investor to give the precise Shapley values
and interaction index of degree 2, so the values are given by
intervals.

Based on the given Shapley values and interaction indices,
the Choquet integral over intervals is calculated for each bond.
The resulting interval values are compared by the degree of
preference equation (1), and the best bond is selected for the
investment.

In general, it is common that higher return of a bond
is associated with higher risk of not-getting this return. An
investor could exhibit a risk-prone or risk-averse behavior in
which case the the first step after calculating Choquet integrals
is to determine the interval of importance by equation (4)
based on the investor’s attitude. Then, the degree of preference
equation is applied to the intervals of importance to determine
the best bond for the particular investor’s behavior.

VI. CONCLUSION

In this paper, we have presented a rational way of order-
ing intervals of preference in multicriteria decision making,
which is highly needed when evaluating alternatives using the
interval-based Choquet integral. In the case when the intervals
are disjoint, the ordering of alternatives is a straightforward
task. To cope with overlapping intervals, degree of preference
was defined to order alternatives.

Moreover, strategies of choice were considered in cases
when a decision-maker exhibits risk-prone or risk-averse atti-
tude. A slight modification of the general degree of preference,
by calculation of the interval of importance, gives a natural
way of ordering intervals of preference that is in agreement
with intuitive behavior of the decision-maker.

Finally, a more common situation, where not all parts of the
interval are equally probable, was considered. Typically, the
interior of the interval has higher chance of giving the correct
value than the extreme points, so Gaussian distribution suits
the situation much better than generally assumed uniform
distribution. A slight modification of the calculation of
the interval of preference as well as degree of preference

calculation was suggested in order to accommodate this
situation.
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