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Abstract

The aim of this paper is to show
how fuzzy measures and intervals can
be combined in order to provide a
simple and accurate practical solution
to multi-criteria decision making prob-
lems. More specifically, we construct an
interval-based Choquet integral in order
to derive preferences over a set of mul-
tidimensional alternatives.
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1 Introduction

In multi-criteria decision making (MCDM)
we aim at ordering multidimensional alterna-
tives. A traditional approach for this problem
is to use a simple weighted sum that ensures
low complexity and ease of use and where each
weight represents the (subjective) importance
given by a decision maker to a particular cri-
terion.

Despite its simplicity, this approach suffers a
major drawback as we can show that using
a weighted sum (or any additive aggregation
operator) to evaluate preferences over a set of
multidimensional alternatives is equivalent to
assuming the independence of criteria (see [6],
[8]).

To prevent this problem, non-additive ap-
proaches were suggested. More specifically,
Fuzzy (or non-additive) measures and in-
tegrals can be used to aggregate mono-
dimensional utility functions (see [5]). Until

recently, this was done in a rather ad hoc way.
An axiomatization of multi-criteria decision
making using the Choquet integral (a partic-
ular case of fuzzy integral) was provided in [7]
and [9].

We are now interested in providing a practical
solution for such problems using the Choquet
integral. That is, under some hypotheses that
are not too restrictive, we want to provide an
algorithm for ordering multidimensional alter-
natives. An inherent problem of fuzzy mea-
sures is their exponential cost. However, we
will show that the notion of 2-additive mea-
sures (see [4]) allows us to limit this cost to
a O(n2). Besides, a convenient representa-
tion of the Choquet integral w.r.t. to im-
portance and interaction indices (that will be
defined further) will allow us to express the
Choquet integral in terms of complementary,
redundant and independent criteria which is
a natural extension of the weighted sum.

In practical problems, we will only require the
decision maker to provide importance and in-
teraction indices which are sufficient to define
preferences over the alternatives as long as we
assume the measure to be 2-additive. This is
not very restrictive as generally, it is rather
difficult to give a semantic of 3rd and higher
order interaction indices. However, it is un-
likely that the decision maker can give precise
values for these indices. Nevertheless, this is
not a major problem as we can reasonably
expect the decision maker to be able to give
intervals of values.

Therefore, the aim of this paper is to present
an interval-valued Choquet integral that will



allow us to express intervals of preferences for
multidimensional alternatives (under rather
weak assumptions). This allows us to have
a simple, accurate and implementable model
for preferences.

In the first part of this paper, we recall the es-
sentials of multi-criteria decision making and
fuzzy measures. Then, we present intervals
and their operations, and eventually, we show
how to combine these two theories to obtain
interval of preferences in the multi-criteria
paradigm.

2 Fuzzy measures in MCDM

2.1 Multi-criteria decision making

Let us consider a set X ⊂ X1 × · · · × Xn.
In a multi-criteria decision making problem,
the set X represents the set of alternatives,
I = {1, · · · , n} is the set of criteria or at-
tributes and the set Xi represents the set of
values for attribute i. In general, a decision
maker has enough information to order val-
ues of attributes in a set Xi. Therefore, we
will assume that each set Xi is endowed with
a weak order �i. Under a rather weak as-
sumption (namely order-separability), for all
i ∈ I, there exists a partial utility function
ui : Xi → IR such that:

∀xi, yi ∈ Xi , xi �i yi ⇔ ui(xi) ≥ ui(yi) (1)

In MCDM, we aim at finding a weak order �
over X that is “consistent” with the partial
orders, that is, we are looking for an aggrega-
tion operator H : IRn → IR such that:

∀x, y ∈ X , x � y ⇔ u(x) � u(y)

with x = (x1, · · · , xn) ∈ X and u(x) =
H(u1(x1), · · · , un(xn)).

By consistent, we mean that the choice of the
aggregation operator should reflect the pref-
erences of the decision maker, and therefore
some degree of subjectivity.

A very natural and simple approach for such a
problem is to use a simple weighted sum. The
decision maker is asked to provide weights
αi ∈ [0, 1] that reflects the importance of each

criterion and such that
∑n

i=1 αi = 1. The util-
ity function is then defined by:

∀x ∈ X , u(x) =
n

∑

i=1

αiui(xi) (2)

Despite an attractive simplicity and low com-
plexity, this approach suffers a major draw-
back. We can show that using an additive ag-
gregation operator such as a weighted sum is
equivalent to assuming all the attributes inde-
pendent ([8]). In practice, this is not realistic
and therefore, we need to turn to non-additive
approaches.

2.2 Fuzzy integration

For the sake of our applications, we restrict
ourselves to the finite case. However, these
definitions can be extended to infinite sets (see
[2] and[5] for a detailed presentation of fuzzy
integration). A fuzzy integral is a sort of very
general averaging operator that can represent
the notions of importance of a criterion and
interaction between criteria (veto and favor)
as we will see thereafter.

To define fuzzy integrals, we need a set of val-
ues of importance, this set being the values
of the fuzzy measure with respect to which
the fuzzy integral is computed. That is, we
need a value of importance of each subset of
attributes.

In the following definition, P(I) represents
the power set of I.

Definition 1. Let I be the set of attributes
(or any set in a general setting). A set func-
tion µ : P(I) → [0, 1] is called a fuzzy mea-
sure if it satisfies the three following axioms:

(1) µ(∅) = 0 : the empty set has no impor-
tance

(2) µ(I) = 1 : the maximal set has maximal
importance

(3) µ(B) ≤ µ(C) if B, C ⊂ I and B ⊂ C: a
new criterion added cannot make the im-
portance of a coalition (a set of criteria)
diminish.



Therefore, in our problem where card(I) = n,
we need a value for every element of P(I) that
is 2n values. Considering, the values of the
empty set and of the maximal set are fixed,
we actually need, (2n−2) values or coefficients
to define a fuzzy measure. So, there is clearly
a trade-off between complexity and accuracy.
However, we will see that we can reduce the
complexity significantly in order to guarantee
that fuzzy measures are used in practical ap-
plications.

A fuzzy integral is a sort of weighted mean
taking into account the importance of every
coalition of criteria.

Definition 2. Let µ be a fuzzy measure on
(I,P(I)) and an application f : I → IR+. The
Choquet integral of f w.r.t µ is defined by:

(C)

∫

I

fdµ =
n

∑

i=1

(f(σ(i))−f(σ(i−1)))µ(A(i))

where σ is a permutation of the indices in or-
der to have f(σ(1)) ≤ · · · ≤ f(σ(n)), A(i) =
{σ(i), . . . , σ(n)} and f(σ(0)) = 0, by conven-
tion.

When there is no risk of confusion, we will
write (i) for σ(i).

It is easy to see that the Choquet integral is
a Lebesgue integral up to a reordering of the
indices. Actually, if the fuzzy measure µ is
additive, then the Choquet integral reduces
to a Lebesgue integral.

2.3 Representation of preferences

We are now able to present how fuzzy mea-
sures can be used in lieu of the weighted sum
and other more traditional aggregation opera-
tors in a multicriteria decision making frame-
work.

It was shown in [9] that under rather general
assumptions over the set of alternatives X,
and over the weak orders �i, there exists a
unique fuzzy measure µ over I such that:

∀x, y ∈ X , x � y ⇔ u(x) ≥ u(y) (3)

where

u(x) =

n
∑

i=1

[u(i)(x(i)) − u(i−1)(x(i−1))]µ(A(i))

(4)
which is simply the aggregation of the
monodimensional utility functions using the
Choquet integral w.r.t. µ.

Besides, we can show that many aggregation
operators can be represented by a Choquet
integral (see [5]). This makes the Choquet
integral a very general and powerful tool to
represent preferences in a multicriteria deci-
sion making settings.

However, we are still facing two crucial prob-
lems. The proof of the above result is not con-
structive. That is, it does not provide a fuzzy
measure to aggregate monodimensional utili-
ties. Second, as we have said before, evaluat-
ing a fuzzy measure requires 2n values. We are
going to see that we can overcome these dif-
ficulties and that using fuzzy measures (cou-
pled with intervals) offers a nice solution to
multicriteria decision making problems.

Let us start with a couple of definitions that
will allow us to show how to limit the com-
plexity to a O(n2).

The global importance of a criterion is given
by evaluating what this criterion brings to ev-
ery coalition it does not belong to, and aver-
aging this input. This is given by the Shapley
value or index of importance (see [11], [3], [4]).

Definition 3. Let µ be a fuzzy measure over
I. The Shapley value of index j is defined by:

v(j) =
∑

B⊂I\{j}

γI(B)[µ(B ∪ {j}) − µ(B)]

with γI(B) = (|I|−|B|−1)!·|B|!
|I|! , |B| denotes the

cardinal of B.

The Shapley value can be extended to degree
two, in order to define the indices of interac-
tions between attributes (see [4] and [?] for
the original paper in Japanese).

Definition 4. Let µ be a fuzzy measure over
I. The interaction index between i and j is



defined by:

I(i, j) =
∑

B⊂I\{i,j} ξI(B) · (µ(B ∪ {i, j})−

µ(B ∪ {i}) − µ(B ∪ {j}) + µ(B))

with ξI(B) = (|I|−|B|−2)!·|B|!
(|I|−1)! .

The interaction indices belong to the interval
[−1, +1] and:

• I(i, j) > 0 if the attributes i and j are
complementary;

• I(i, j) < 0 if the attributes i and j are
redundant;

• I(i, j) = 0 if the attributes i and j are
independent.

Interactions of higher orders can also be de-
fined, however we will restrict ourselves to
second order interactions which offer a good
trade-off between accuracy and complexity.
To do so, we define the notion of 2-additive
measure.

Definition 5. A fuzzy measure µ is called 2-
additive if all its interaction indices of order
equal or larger than 3 are null and at least one
interaction index of degree two is not null.

In this particular case of 2-additive measures,
we can show that ([4]):

Theorem 1. Let µ be a 2-additive measure.
Then the Choquet integral can be computed by:

(C)
∫

I
fdµ =

∑

Iij>0(f(i) ∧ f(j))Iij+
∑

Iij<0(f(i) ∨ f(j))|Iij |+
∑n

i=1 f(i)(Ii −
1
2

∑

j 6=i |Iij |).

Note that this expression justifies the above
interpretation of interaction indices, as a pos-
itive interaction index corresponds to a con-
junction (complementary) and a negative in-
teraction index corresponds to a disjunction
(redundant).

In the weighted sum case, we assume that
the decision maker can provide us with the
weights she/he puts on each criterion. How-
ever, we know that this model is inaccurate

when trying to deal with dependencies. We
could use a Choquet integral instead, as we
have seen that they are a convenient and pre-
cise tool to model preferences. However, the
complexity is very high. Therefore, in order
to combine the best of the two worlds, we can
ask the decision maker to give the Shapley
values, as well as the interaction indices, and
then use the reconstruction theorem 1 to ob-
tain the aggregation operator, which is a Cho-
quet integral w.r.t. to a 2-additive measure.
Of course, we have to assume the measure to
be 2-additive to use theorem 1. However, this
is not a serious limitation as the importance
and the 2-order interaction are enough to give
a thorough semantic interpretation of the re-
sults.

Nevertheless, such an approach raises an
other problem. How can we expect the de-
cision maker to give a precise value for the
importance and interaction indices? In order
to overcome this hurdle, we introduce the con-
cept of interval and see how it can be used
efficiently to derive “interval of preferences”.

3 Intervals

3.1 Real Interval Arithmetic

Interval Arithmetic (IA) is an arithmetic over
sets of real numbers called intervals. IA has
been proposed by Ramon E. Moore [10] in the
late sixties in order to model uncertainty, and
to tackle rounding errors of numerical com-
putations. For a complete presentation of IA,
we refer the reader to [1].

Definition 6 (Real interval). A real inter-
val is a closed and connected set of real num-
bers. Every real interval x is denoted by [x, x],
where its bounds are defined by x = inf x and
x = supx. In order to represent the real line
with closed sets, R is compactified in the obvi-
ous way with the infinities {−∞, +∞}. The
set of real intervals is denoted I.

Given a subset ρ of R, the convex hull of ρ is
the real interval Hull(ρ) = [inf ρ, sup ρ]. The
width of a real interval x is the real number
w(x) = x− x. Given two real intervals x and
y, x is said to be tighter than y if w(x) ≤
w(y).



Elements of In define boxes. Given
(x1, . . . ,xn)T ∈ In, the corresponding box
is the Cartesian product of intervals X =
x1 × · · · × xn. By misuse of notation, the
same symbol is used for vectors and boxes.
The above-mentioned notions are straightfor-
wardly extended to boxes.

IA operations are set theoretic extensions of
the corresponding real operations. Given
x, y ∈ I and an operation ♦ ∈ {+,−,×,÷},
we have x♦y = Hull{x♦y | (x, y) ∈ x × y}.
Due to properties of monotonicity, these op-
erations can be implemented by real com-
putations over the bounds of intervals. For
instance, given two intervals x = [a, b] and
y = [c, d], we have x + y = [ a + c , b + d ].














x + y = [ a + c , b + d ]
x − y = [ a − d , b − c ]
x × y = [ min{ac, ad, bc, bd} ,

max{ac, ad, bc, bd} ]

The associative law and the commutative
law are preserved over I. However, the dis-
tributive law does not hold. In general,
only a weaker law is verified, called sub-
distributivity. For all x, y, z ∈ I, we have:

x × (y + z) ⊆ x × y + x × z

We observe in particular that equivalent ex-
pressions over the real numbers are no longer
equivalent when handling intervals: different
symbolic expressions may lead to different in-
terval evaluations. This problem is known as
the dependency problem of IA, and a funda-
mental problem in IA consists in finding ex-
pressions that lead to tight interval computa-
tions.

3.2 Interval Extensions

IA is designed to represent outer approxi-
mations of real quantities. The range of a
real function f over a domain D, denoted by
fu(D), can be computed by interval exten-
sions.

Definition 7 (Interval extension). An in-
terval extension of a real function f : Df ⊂
Rn → R is a function ϕ : In → I such that

∀X ∈ In, (X ∈ Df ⇒
fu(X) = {f(x) | x ∈ X} ⊆ ϕ(X)) .

This inclusion formula is called Fundamental
Theorem of IA.

This definition implies the existence of in-
finitely many interval extensions of a given
real function. In particular, the weakest and
tightest extensions are respectively defined
by: X 7→ [−∞, +∞] and X 7→ Hull(fu(X)).

The most common extension is known as the
natural extension. Natural extensions are ob-
tained from the expressions of real functions,
and are inclusion monotonic1, which means
that given a real function f , its natural ex-
tension, denoted f , and two intervals x and
y such that x ⊂ y, then f(x) ⊂ f(y). Since
natural extensions are defined by the syntax
of real expressions, two equivalent expressions
of a given real function f generally lead to
different natural interval extensions. In Fig-
ure 1, we see that both interval functions de-
fine interval extensions of f . However, one
function is clearly better.

f; gO f : x 7! x3 � x4g : x 7! �x2((x� 0:5)2 � 0:25)
evaluation of f
evaluation of g

Figure 1: Natural interval evaluations of two
expressions of a real function f .

The overestimation problem, known as depen-
dency problem of IA, is due to the decorre-
lation of the occurrences of a variable dur-
ing interval evaluation. For instance, given
x = [a, b] with a 6= b, we have x − x =
[a − b, b − a] % 0.

An important result is Moore’s theorem
known as the theorem of single occurrences.

Theorem 2 (Moore [10]). Let f be a real

1This property follows from the monotonicity of
interval operations



function, f : Df ⊂ Rn → R, such that
(x1, . . . , xn) 7→ t(x1, . . . , xn) where t is a sym-
bolic expression interpreted by f . If each xi

occurs only once in t, 1 ≤ i ≤ n, then

∀X ∈ In, (X ⊆ Df ⇒ fu(X) = f(X)) .

In other words, there is no overestimation if
all variables occur only once in the given ex-
pression.

Let us remark that interval computations are
performed on computers, where real numbers
are simulated by floating-point numbers. As a
result, real intervals are simulated by real in-
tervals whose bounds are floating-point num-
bers, called floating-point intervals. The set
of such intervals is denoted IF. The main
difference between I and IF is that computa-
tions over floating-point numbers need to be
rounded.

Floating-Point IA corresponds to Real IA
where all intermediate results of interval com-
putations are outward rounded as follows:
[a, b] ∈ I  [⌊a⌋, ⌈b⌉] ∈ IF. where ⌊a⌋
(resp. ⌈b⌉) is the largest (smallest) element of
F smaller (greater) than or equal to a (b).

For expressions with single occurrences of
variables, we commonly say that Moore’s the-
orem is valid except on rounding. The overes-
timation due to rounding errors has to be dis-
tinguished with overestimation that also hap-
pens on I.

In the following, the set IF will be simply de-
noted by I. Elements of IF will be called in-
tervals.

4 Intervals of preferences

As we have seen before, to define preferences
over alternatives, the user is required to pro-
vide importance and interaction indices, but
is more likely to establish intervals of values
than precise values. In this section, we ex-
plain how such interval information can be in-
tegrated in the scheme of computation of the
Choquet integral, by extending its definition
to Interval Arithmetic.

Since the user is not longer asked for precise

values of indices Iij and Ii, but for intervals2,
we consider intervals of values of these indices,
and we respectively denote them Iij and Ii, i,
j ∈ {1, . . . , n}. As a consequence, the formula
for the computation of the Choquet integral
is now given by:

(CI)
∫

I
fdµ =

∑

Iij>0(f(i) ∧ f(j))Iij

+
∑

Iij<0(f(i) ∨ f(j))|Iij|+

+
∑n

i=1 f(i)(Ii −
1
2

∑

j 6=i |Iij|).

where the annotation (CI) means that the in-
terpretation of this formula is performed us-
ing IA. As a consequence, the value of the
integral is an interval, which we hope is the
tightest one regarding the interval informa-
tion provided by the user.

However, using IA means that overestimation
of the range of real functions may occur, due
to the above-mentioned dependency problem
of IA. In particular, in the case of Equation 5,
every interval variable Iij occurs twice, with
different monotonicities (once positively, once
negatively), which inevitably leads to overes-
timating the expected range of values. There-
fore, the right part of the formula is rewritten
so as to obtain single occurrences only:

(CI)
∫

I
fdµ =

∑n
i=1 f(i)Ii

+
∑

Iij>0

(

(f(i) ∧ f(j)) − 1
2(f(i) + f(j))

)

Iij

+
∑

Iij<0

(

(f(i) ∨ f(j)) − 1
2(f(i) + f(j))

)

|Iij|

(5)
This formula contains only single occurrences
of interval variables, which is a guarantee
to obtain the exact range of possible values,
given the intervals of preferences of the user.

Two alternatives are then compared w.r.t. the
corresponding interval values of their interval
integral of Choquet, as follows:

(CI)

∫

I

fdµ � (CI)

∫

I

gdµ
def
⇔

(CI)

∫

I

fdµ ≥ (CI)

∫

I

gdµ (6)

This is interpreted as the alternative f is pre-
ferred to the alternative g. It is worth not-
ing that if the decision maker gives precise

2We will make the assumption (not restrictive) that
the decision maker cannot give an interval whose in-
terior contains 0, which would be a contradictory in-
formation.



values for the importance and interaction in-
dices, then the interval-based Choquet inte-
gral restricts to a standard Choquet integral
and the intervals of preferences are real valued
numbers.

However, we should also emphasize the fact
that the above case is an ideal case where the
interval of preferences do not intersect and the
preferences are clear. It may happen that:

(CI)

∫

I

fdµ
⋂

(CI)

∫

I

gdµ 6= ∅

In such a case, we need to define a degree of
preference corresponding to the intersection
of the intervals.

4.1 Strategy of preference

We could use a trivial solution which is to look
at the upper bounds and give preference to
the highest upper bound, which corresponds
to an optimistic behavior: the preference is
given to the alternative more likely to have
a high Choquet integral value; or to look at
the lower bounds and give preference the the
highest lowest bound which then corresponds
to a pessimistic behavior: the preference is
given to the alternative less likely to have a
low Choquet integral value.

However, many alternatives between the very
optimistic case and the very pessimistic case
are possible. It is our feeling that we need to
look simultaneously at the upper and lower
bounds as well as the width of the inter-
vals. Indeed, in many situations, the deci-
sion maker will exhibit some sort of aversion
of risk and will want to have intervals as tight
as possible, that is restrict the degree of un-
certainty. In particular, we can already draw
some strategies of choice as follows.

Suppose that we consider two intervals I and
J , corresponding respectively to (CI)

∫

I
fdµ

and (CI)
∫

I
gdµ. If the configuration is as

illustrated by Figure 2, then an optimistic
strategy could consist in giving preference to
interval I, since I offers the possibility of hav-
ing higher Choquet integral values.

It is not as simple when J is included in I. In-
deed, when the configuration is as illustrated

IJ
Figure 2: Configuration of Choquet integral
intervals I and J where preference is given to
interval I.

by Figure 3:

J − I = I − J,

without more information, we can guess that
there is the same probability for values in I to
be smaller than values in J , as to be greater.
As a consequence, a reasonable strategy could
consist in giving preference to J since J is
tighter and therefore more accurate.IJ
Figure 3: Configuration of Choquet integral
intervals I and J where preference is given to
interval J .

When interval I is not as well-balanced
around J as it was in the previous configu-
ration, two configurations, respectively illus-
trated by Figures 4 and 5, are to be consid-
ered. In such cases, our feeling is that we may
have to give preference to the interval that
minimizes the risk of having small Choquet
integral values. The first case is defined by:

J − I > I − J.

A safe strategy may consist in preferring JI J
Figure 4: Configuration of Choquet integral
intervals I and J where the preference is given
to interval J .

for which the probability of obtaining small
Choquet integral values is less than for I. On
the contrary, the second case is defined by:

J − I < I − J,



and a safe strategy would then consist in pre-
ferring I for the same reason as just men-
tioned. IJ
Figure 5: Configuration of Choquet integral
intervals I and J where the preference is given
to interval I.

As a last remark, probability distribution
might be provided by the user for each in-
terval, and attached to the Choquet inter-
vals. As a result, new strategies of choice may
be considered. The definition of a degree of
preference and a more complete semantics at-
tached to it is part of our future research.

5 Conclusion

In this paper, we have presented a simple
computation scheme, combining the Choquet
integral (in the 2-additive case) with inter-
val arithmetic that allows us to give intervals
of preferences over multidimensional alterna-
tives. The approach is very attractive as it re-
flects more accurately what we can really ex-
pect from a decision maker, yet remains sim-
ple and still allows us to represent dependen-
cies between attributes which is not possible
with more traditional approaches such as the
weighted sum.

In the case where the intervals of preferences
are disjoint, the order of alternatives is clearly
established. However, it is not as trivial in the
(more probable) case where the intervals have
an intersection. In this case, some more re-
search is needed to give a consistent ordering
of the preferences when the size of the inter-
vals tends to the limit case where there is no
uncertainty on the values of importance and
interaction.
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