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WHAT IS THE PROBLEM THAT WE ADDRESS?

Given the model of a dynamic system, use it to make decisions.

What type of decisions?
What are the challenges? Why is it hard?

Types of decisions of interest:

Understanding how a dynamic phenomenon unfolds under different input
parameters: simulations → e.g., design decisions
Based on some knowledge of an unfolding phenomenon, predicting its behavior→ e.g., to allow preventive actions for instance
Enforcing some behavior, when control of input or other parameters is
possible, and/or recomputing parameters on the fly → e.g., to address an
unexpected event and still guarantee an acceptable outcome of the situation
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CHALLENGES

Solving a dynamical system potentially leads to a large system of equations –
possibly nonlinear

We can solve these large problems
But it takes time
What can be done?

Let’s add to that the possibility of uncertainty in the model, data, etc.

And some interest in reliability / guaranteed results... as can be
It is not just about getting data to make decisions.
We’d like to be able to rely on such data.
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HOW WE ADDRESSED THESE CHALLENGES

Size.
We worked on reducing the size of the discretized model

via: Model-Order Reduction (ROM): with wavelets, intervals

Uncertainty.
On Full-Order Models (FOMs): to generate ROMs in presence of
uncertainty in the model or just to limit the number of FOM executions for
snapshots
On ROMs: to address uncertainty in input parameters, model constants
We used Interval Constraint Solving Techniques when ROMs were small
enough
We used Stochastic Approaches when ROMs were still large for ICST

Reliability.
Interval computations allow to carry guaranteed computations
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FOCUS OF THIS PRESENTATION

How to make predictions on observed (not controled) dynamic phenomena?

How to conduct parameters’ recomputations for unfolding dynamic phenomena?
Is this usable in practice? Or do we need to harness a lot of computational power
to make such decisions?
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GENERAL ASSUMPTIONS

In order to predict behavior or recompute parameters:

We need to know which dynamic system we are observing / modifying

We assume that we have access to a ROM of such problem
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BASE PROBLEMS

Original FOM problem. We have:

F : Rn × Rm → Rn, F : (x, λ) 7→ F(x, λ)

Knowing the value of λ, we often solve F(x, λ) = Fλ(x) = 0.

Reduced problem (ROM). We now have:

FΦ : Rp × Rm → Rn, FΦ : (~x, λ) 7→ F(Φ · ~x, λ), with: p ≪ n

Knowing the value of λ, we could solve F(Φ · ~x, λ) = Fλ(Φ · ~x) = 0, where
~x ∈ Rp, and then we would recover x using x = Φ · ~x.
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PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

For Predictions, what problem are we solving?

We do not know the values of λ (and possibly of boundary conditions either).
We have access to observed values of the original system’s variables (FOM’s
variables)

Obs = {xi, i ∈ {1, . . . , n}}

So we have the following problem:

F(λ, x) = 0 is now: FObs(λ, x \Obs) = 0

Not such a different-looking problem from what we had before: somehow
G(X) = 0 for some G.
However, we solve the Reduced version of F: F(Φ · ~x, λ) = 0 with ~x ∈ Rp, p ≪ n.
So we end up trying to solve the following reduced system of (possibly
nonlinear) equations:{

F(Φ~x, λ) = 0 (same as before)
∀xk ∈ Obs, xk =

∑p
i=1

Φk,i ~xi
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PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

So here is the problem we are solving:{
F(Φ · ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i · ~xi

The catch is that observations usually include uncertainty. As a result, we have:

xk = [xk, xk]

We solve such problems (with uncertainty and nonlinear) using interval computations
and constraint solving techniques.

Interval computations: because (1) they allow to explore the whole search
space, (2) they provide guarantees on the computed solutions
Constraint solving techniques: because they always converge: so if they
conclude that there is no solution, it is not to be blamed on a convergence issue

In what follows, we illustrate our work on the Lotka-Volterra problem.

9



PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

So here is the problem we are solving:{
F(Φ · ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i · ~xi

The catch is that observations usually include uncertainty. As a result, we have:

xk = [xk, xk]

We solve such problems (with uncertainty and nonlinear) using interval computations
and constraint solving techniques.

Interval computations: because (1) they allow to explore the whole search
space, (2) they provide guarantees on the computed solutions
Constraint solving techniques: because they always converge: so if they
conclude that there is no solution, it is not to be blamed on a convergence issue

In what follows, we illustrate our work on the Lotka-Volterra problem.

9



PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

So here is the problem we are solving:{
F(Φ · ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i · ~xi

The catch is that observations usually include uncertainty. As a result, we have:

xk = [xk, xk]

We solve such problems (with uncertainty and nonlinear) using interval computations
and constraint solving techniques.

Interval computations: because (1) they allow to explore the whole search
space, (2) they provide guarantees on the computed solutions
Constraint solving techniques: because they always converge: so if they
conclude that there is no solution, it is not to be blamed on a convergence issue

In what follows, we illustrate our work on the Lotka-Volterra problem.

9



PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

So here is the problem we are solving:{
F(Φ · ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i · ~xi

The catch is that observations usually include uncertainty. As a result, we have:

xk = [xk, xk]

We solve such problems (with uncertainty and nonlinear) using interval computations
and constraint solving techniques.

Interval computations: because (1) they allow to explore the whole search
space,

(2) they provide guarantees on the computed solutions
Constraint solving techniques: because they always converge: so if they
conclude that there is no solution, it is not to be blamed on a convergence issue

In what follows, we illustrate our work on the Lotka-Volterra problem.

9



PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

So here is the problem we are solving:{
F(Φ · ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i · ~xi

The catch is that observations usually include uncertainty. As a result, we have:

xk = [xk, xk]

We solve such problems (with uncertainty and nonlinear) using interval computations
and constraint solving techniques.

Interval computations: because (1) they allow to explore the whole search
space, (2) they provide guarantees on the computed solutions

Constraint solving techniques: because they always converge: so if they
conclude that there is no solution, it is not to be blamed on a convergence issue

In what follows, we illustrate our work on the Lotka-Volterra problem.

9



PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

So here is the problem we are solving:{
F(Φ · ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i · ~xi

The catch is that observations usually include uncertainty. As a result, we have:

xk = [xk, xk]

We solve such problems (with uncertainty and nonlinear) using interval computations
and constraint solving techniques.

Interval computations: because (1) they allow to explore the whole search
space, (2) they provide guarantees on the computed solutions
Constraint solving techniques: because they always converge: so if they
conclude that there is no solution, it is not to be blamed on a convergence issue

In what follows, we illustrate our work on the Lotka-Volterra problem.

9



PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

So here is the problem we are solving:{
F(Φ · ~x, λ) = 0

∀xk ∈ Obs, xk =
∑p

i=1
Φk,i · ~xi

The catch is that observations usually include uncertainty. As a result, we have:

xk = [xk, xk]

We solve such problems (with uncertainty and nonlinear) using interval computations
and constraint solving techniques.

Interval computations: because (1) they allow to explore the whole search
space, (2) they provide guarantees on the computed solutions
Constraint solving techniques: because they always converge: so if they
conclude that there is no solution, it is not to be blamed on a convergence issue

In what follows, we illustrate our work on the Lotka-Volterra problem.

9



PREDICTIONS: LOTKA-VOLTERRA

Let’s consider the following problem of predators and preys, defined by:
dv

dt
= θ1v(1 −w) and

dw

dt
= θ2w(v − 1)

where v represents the number of preys and w the number of predators.
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PREDICTIONS: LOTKA-VOLTERRA
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PREDICTIONS: LOTKA-VOLTERRA

Left: one observation set and θ1 = θ2 = [0, 6].
Right: five observation sets, θ1 = [0.1875, 6] and θ2 = [0, 4.6875]
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PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

Some conclusions:

We are able to make predictions
We observed that predictions on ROM yield less uncertainty than predictions on
FOM

The runtime is 74,596ms for FOM and 4,616ms for ROM.
This poses the question of the quality of the ROM: should we consider local
bases?
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PREDICTING DYNAMIC SYSTEMS' BEHAVIOR

Some conclusions:

We are able to make predictions
We observed that predictions on ROM yield less uncertainty than predictions on
FOM

But we still need:

to handle outliers: at best no solution, at worst erroneous ones
to handle time horizon uncertainty
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RECOMPUTING DYNAMIC SYSTEMS' PARAMETERS

Another assumption: we can modify the values of the dynamic system’s
parameters.

Why/when would we do that?

to fix an unfolding phenomenon after an unexpected event
to ensure a given behavior
to prevent a given behavior

What does it look like?
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RECOMPUTING DYNAMIC SYSTEMS' PARAMETERS

Still using the Lokta-Volterra problem:{
y ′
1
= θ1y1(1 − y2) = θ1y1 − θ1y1y2,

y ′
2
= θ2y2(y2 − 1) = θ2y2y1 − θ2y2,

We choose: y1(0) = 1.2, θ1 = 2.95, y2(0) = 1.1, and θ2 = 1.0.

But then we decide to alter the value of θ1 to 1.5 at the 50th time step, and we
recompute θ2 to enforce that y1 and y2 will converge to the same end point as in the
initial problem at the 100th time step.

We obtained no solution despite θ2 = [0, 5].
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RECOMPUTING DYNAMIC SYSTEMS' PARAMETERS

Some conclusions:

We are able to (re-)compute parameters
But we still have to take recomputation time into account when doing it “on the fly”
Future steps? identify parameters that, even under uncertainty, guarantee a
certain behavior. E.g., combustion problem in collaboration with Luis Bravo, ARL
APG: what type of fuel mix? what geometry of the nozzle, etc.
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DECISIONS UNDER UNCERTAINTY ON A MOBILE APP

Objective: Show that we can handle uncertainty in ways we showed before on a
computationally-limited device.

That was our capstone project.
We implemented all techniques used before on an android device.
Let’s take a look at the intended use and functionalities of this app.
Note: this work was conducted with feedback from Simon Su, ARL APG
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OUR MOBILE TOOL: SIMULATION W/O UQ
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OUR MOBILE TOOL: SIMULATION WITH UQ
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OUR MOBILE TOOL: PREDICTION (WITH UQ)
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OUR MOBILE TOOL

Some conclusions:

We have a working app: no need for internet or powerful devices/machines

But we still have:

to work on prioritizing the size for predictions to enhance computation time
to include computations with local bases: we plan to leverage multiple
cores
to include recomputations: similar computations to predictions, but will
need to handle time uncertainty

We can also easily:

expand it to handle larger problems: with a connection to a webserver and
a powerful machine
to include recomputations: similar computations to predictions, but will
need to handle time uncertainty
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CONCLUSION

What we learned and demonstrated:

Handling uncertainty: an opportunity to do more, to draw more types of decisions
Intervals: allow to provide guarantees on results

In addition, we also worked on handling uncertainty in a large problem (even as ROM):

a combustion problem brought to us by Luis Bravo (ARL APG)
two articles currently in progress

This work was done with feedback from and in collaboration with ARL researchers:

Luis Bravo (Combustion problem) and Simon Su (Capstone project), ARL APG
Rad Balu (Uncertainty), ARL ALC
Craig Barker (ROM and Uncertainty), ARL, APG

The UTEP team also consists of: Miguel Argaez (Co-PI), HoracioFlorez (Post-doc at
ARL ALC), Leobardo Valera (Ph.D. student at UTEP), Jesus Padilla and Phillip
Hassoun (undergraduate students at UTEP).
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PRODUCTS OF OUR WORK (SINCE 2014)

Conference papers: 16 + 2 in progress with Luis Bravo (ARL APG)

among which 2 best student paper awards

Journal articles and chapters: 2 + 1 in progress

Florez and Argaez, in Applied Mathematical Modelling (2017)
Ceberio and Valera, in the Journal of Uncertain Systems (2016)

Invited presentations: 2

Ceberio: Plenary talk at the International Conference SCAN’16 on Validated
Computing
Ceberio: Invited seminar at the University of Paris 6, Pierre and Marie Curie, in
fall 2017

Mobile application for decisions with UQ
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THANK YOU FOR YOUR ATTENTION

Any Questions?

Below are illustrations of other parts of our work:

39


