CS1401 – Programming Assignment 11
Due: April 26, 2015 by 11:59pm
To be submitted via Piazza in the folder “lab11”

Welcome to Lab 11!

This lab assignment is unusual, please pay attention! It is to be done over a period of two weeks: please pay attention to the deadline, April 26, 2015. Also it is to be done in pairs, so make sure you have been assigned a team mate: there will be only one submission per pair.

Since this lab is to be done in pairs (twice the thinking power!) and you have two weeks to complete it, you will observe that there are 4 activities to be completed, instead of two or three usually.

The exciting part of it is that you are going to realize how far you have come since the start of the semester: this lab will allow you to put most of your skills to use and you will see how you can now build complex and more interesting tools.

In this lab, you will be tasked with designing a set of functionalities to handle student records (to be implemented mostly in the file lab11,java). As you did it in class previously, you will most likely find it convenient to define your own new “type” StudentRecord (java file provided: StudentRecord.java).

Once again, do make sure that you follow instructions. This includes turning in all that is expected from you: look for “To be turned in” instructions in this document.

Before you start: remember that you do have to turn in your lab in the following format:
· Put all your files (the java files lab11.java and StudentRecord.java, your docx file) in a folder named after the last name followed by the first name of the first member of the pair, followed by the last name followed by the first name of the second member of the pair
· Compress this folder into a .zip file (nothing else than a .zip)
· Submit the .zip file

Tips of the week!
1. Establish a good working relationship with your team-mate: make sure you can interact outside of the labs. Interacting virtually is not a problem: many people who work together nowadays do it remotely so it is a good time to learn how to do it!
2. Do program in the areas pointed out to you in the code and follow instructions: do not enter your code for the methods inside the main method (only code required to test these methods). Although it works, it is not good practice and it goes against the idea of creating new methods to make your code more modular.

Now, let’s get you started! Here are the four activities you need to complete. Have fun! … and please ask us (instructors, TAs, peer-leaders) if you need any help: we love to help and are always happy to review your code and get you unstuck!

Activity 1. In this activity, you will have to create your new type StudentRecord. This will have to be done in a separate java file (also provided): StudentRecord.java.

The reason why you need to create a new type is because you need to put together different pieces of information (the attributes that make up your new type). Here in our case, these attributes are the following:
· a first name
· a last name
· a UTEP ID
· a GPA
· a number of credit hours already completed

You also need to implement what are called constructors: we provide you with one and we ask that you create at least one more. A constructor is going to create a StudentRecord: it is letting the computer know that an address needs to be created for it. The constructor that is provided to you is called the “default constructor” because it does not take any parameter: basically it is telling the computer that you need a StudentRecord but that you will fill it with appropriate information only later.

To make the design of this type complete, you need to make sure that the attributes that compose it can be accessed and/or modified: this is achieved by designing methods that are called accessors and modifiers. There is usually one of each per attribute: for each attribute, we need a way to access the value of this attribute and a way to modify it. We provide you with some of these and we ask that you design the remaining ones.

Finally, there might be other methods that are relevant to StudentRecord. In particular, we ask that you design a method that modifies a student record based on a new grade (grade and corresponding number of credit hours). We also ask that you design a method that nicely prints a StudentRecord (the “niceness” and style of it is left up to your creativity).

Now some reminders about how to use a “new type” like StudentRecord:

To create a StudentRecord, do as follows:

StudentRecord record1 = new StudentRecord();
// this uses the default constructor: it takes no parameter and basically just creates a // shell of a StudentRecord with no information within.
or:
StudentRecord record1 = new StudentRecord(“John”, “Loya”);
// this uses another constructor: one that takes two parameters whose value is to be // stored in the relevant attributes of StudentRecord.

To use the accessors and the modifiers, once a StudentRecord has been defined (for instance, record1 as above), you do as follows:

	record1.getFirstName()
is the value of the string variable / attribute firstName

record1.setFirstName(“Jesus”)
has the effect of modifying the StudentRecord in such a way that the first name of the
student is now Jesus and not what it was set to before (if it even had a value)

To use methods dedicated to StudentRecord, here is an example of what to do:

	record1.addGrade(‘B’,4)
has the effect of modifying the StudentRecord record1 in such
a way that the GPA is modified according to a new grade B in a course of 4 credit hours.

To be turned in:
· The pseudocode of addGrade and of printRecord (in your docx file)
· The code (in StudenRecord.java) of StudentRecord, as requested: please follow instructions within the code.

Activity 2. In this activity, you have to implement a method creates that reads a series of student information from a text file (one line per student; sample input file is provided: lab11-input.txt). The information about students is stored in an array of StudentRecord and is returned.

Now the size of the array depends on the number of student information in the file. You are expected to design an auxiliary method, linecount, that takes the file (e.g., lab11-input.txt) as parameter and returns the number of lines inside (an integer as output).

To be turned in:
· The pseudocode (in your docx file) and code (in lab11.java) of creates and linecount.

Activity 3. In this activity, you have to implement a method that takes an array of StudentRecord as parameter and returns nothing but, within its body, modifies the array passed as a parameter in such a way that it is sorted in alphabetical order of the last name-first names of the students.
To be turned in:
· The pseudocode (in your docx file) and code (in lab11.java) of your sorting method.
· Trace of your method (in docx file) used in conjunction with creates on a given input file: please provide the input file as well. For instance you could test:
StudentRecord[] arrayStudentRecord = creates(“./myfile.txt”);
sortStudentRecord(arrayStudentRecord);

Activity 4. In this activity, you have to implement a method that takes nothing as an input but prompts the user to enter information about students. As information is received, StudentRecords are created.

Now, you do not know how many records are going to be received from the user: there should be some sort of a repeat structure that keeps prompting the user to enter student information until he or she wishes to stop.
Not knowing how many StudentRecord entries you can expect to receive, you cannot store the information in an array. You have to use lists (linked lists; see videos on this topic).

The method you have to design will then receive input from the user and return a linked list.

To be turned in:
· The pseudocode (in your docx file) and code (in lab11.java) of your list method.
· Trace of your method (in docx file): please provide the user input you use.

Some reminder about linked lists:

Linked lists are like treasure hunts: you need to go to the first clue to know where to go next, and then find a clue that tells you where to go next, etc. Until you reach the treasure (or in our case, the end of the linked list).

[image:]

Unlike arrays that are more like a row of townhouses: once you reach the first house, you have direct access to the other houses (they are neighbors after all). You can even go from the first house directly to the last house, without stopping by to say hi to the neighbors in between…

[image:]

[bookmark: _GoBack]Their main advantage of linked lists over arrays is that they can grow as needed (you do not need to know the amount of clues you are going to have, you just keep going) as opposed to a row of houses (an array): when you decide to build them, you know the street and you know there will be so many houses and there is no way you can build more than that (the street is only so long…).

Now, let’s focus on linked lists.

Keep in mind that this is a container so it will still contain the information you need: in this case, each “clue” is a StudentRecord. The specific feature of a linked list, as a treasure hunt, is that each clue not only contains the information that we need to store but also the address / location of the next clue (the next StudentRecord).

How does that work?
Each element / clue of a linked list / treasure hunt is called a Node and consists of the following information:

	Information / clue
	
	StudentRecord

	Location of next clue
	
	Address of the next Node

And in order to access, let’s say, the third element of the list, you need to go through the first and the second elements first.

image1.gif

image2.jpg

