
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

12-2016

A Modification of Backpropagation Enables Neural
Networks to Learn Preferences
Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Sciences Commons
Comments:
Technical Report: UTEP-CS-16-102
To appear in Journal of Uncertain Systems

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Ceberio, Martine and Kreinovich, Vladik, "A Modification of Backpropagation Enables Neural Networks to Learn Preferences"
(2016). Departmental Technical Reports (CS). 1077.
http://digitalcommons.utep.edu/cs_techrep/1077

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/1077?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


A Modification of Backpropagation Enables

Neural Networks to Learn Preferences

Martine Ceberio and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

mceberio@utep.edu, vladik@utep.edu

Abstract

To help a person make proper decisions, we must first understand
the person’s preferences. A natural way to determine these preferences
is to learn them from the person’s choices. In principle, we can use the
traditional machine learning techniques: we start with all the pairs (x, y)
of options for which we know the person’s choices, and we train, e.g., the
neural network to recognize these choices. However, this process does not
take into account that a rational person’s choices are consistent: e.g., if
a person prefers a to b and b to c, this person should also prefer a and
c. Since the usual learning algorithms do not take this consistency into
account, the resulting choice-prediction algorithm may be inconsistent.
It is therefore desirable to explicitly take consistency into account when
training the network. In this paper, we show how this can be done.

1 Formulation of the Problem

Need to learn preferences. To help a person make decisions, we must first
understand this person’s preferences. Sometimes, a person can describe his
or her preferences in precise terms. However, in many cases, a person cannot
describe these preferences in precise terms, so we must elicit such preferences
from him or her.

Elicitation such preferences is an important task in decision making; see, e.g.,
[5, 6, 8]. Elicitation such preferences is also an important part of recommender
systems.

It is natural to use machine learning to learn preferences. The only
way to learn a person’s preferences is to provide this person with several pairs
of options, record the person’s preferences for all these pairs, and then use this
information to predict how this person will react to other pairs.

1



Computers have been designed to process numbers. Computers are still
much better in processing numbers than in processing any other type of infor-
mation. Therefore, a reasonable way to describe each option is to describe it by
a tuple of numbers x = (x1, . . . , xn), namely, as a tuple consisting of different
numerical quantities that characterize this option.

The preference can also be described by some number z. For example, for
each pair (x, y), we can use z = 1 if the person preferred x and z = −1 if the
person preferred y.

In these terms, the problem of learning a person’s preferences takes the
following form:

• we are given a finite list of pairs of tuples (x, y) for each of which we know
the preference z;

• we would like to use this information to predict the values z corresponding
to all other pairs (x, y).

In this form, the problem becomes a particular case of the general machine
learning problem; see, e.g., [2]. And indeed, machine learning techniques have
been effectively used to elicit preferences.

Limitations to a straightforward application of machine learning. The
above formulation does not take into account that for a rational person, pref-
erences corresponding to different pairs are related to each other. Namely, if a
person preferred x to y and y to u, then we expect this person to prefer x to u
as well. In other words, preferences must be transitive: if z(x, y) = z(y, u) = 1,
then we should have z(x, u) = 1.

The above formulation does not take this transitivity into account. As a
result, at each stage of learning, we may have the current state of the learned
function z(x, y) to be non-transitive. This leads to the following two limitations:

• The fact that on the intermediate stages, we go through un-realistic func-
tions before getting to the correct one makes the system wander more
than needed and thus, take longer time to learn – and for machine learn-
ing techniques, learning time is, in general, rather long [2].

• It is also possible that some non-transitivity will remain for the learning
result as well – in which case the resulting system clearly makes wrong
predictions.

To speed up the learning process and to make its result more adequate, it
is therefore desirable to modify the machine learning algorithms so that they
explicitly take transitivity into account.

What we do in this paper. In this paper, we propose exactly such a modifica-
tion. We explain our idea on the example of back-propagation neural networks
– since as of now such networks are the most efficient machine learning tools.

Specifically, the efficient tools are deep networks, with a large number of
layers. To simplify our exposition, we only provide the corresponding formulas
for the simpler case of the traditional 3-layer networks; however, these formulas
can be easily generalized to any number of layers.

2



2 Main Idea

General idea. A preference relation can be usually described by a function
f(x) such that x is preferred to y if and only f(x) is larger than or equal to
f(y). We will therefore use a neural network not to learn z(x, y), but instead,
to learn the corresponding function f(x).

This way, on each intermediate stage of learning, the corresponding relation
f(x) ≥ f(y) is clearly transitive.

How can we implement this idea? To decide how to implement this idea,
let us recall how neural networks work. If for a given neural network, for some
example (x, y), the predicted value z(x, y) is different from the observed value
z, then we modify the parameters of the neural network so as to decrease this
difference – and thus, get it closer to 0.

Similarly, in our case, if for some pairs (x, y), the person prefers x, but
at the current stage of learning, with the learned-so-far function f(x), we get
f(x) < f(y), then we should modify the parameters of the neural network so
as to decrease the difference f(y) − f(x) – and thus, get it closer to a desired
negative value.

Of course, if the values of f(x) and f(y) are very close, a person may not
notice the difference. So, it makes sense to say that if x is preferred to y, then
not only we should have f(x) ≥ f(y), but the difference f(x)− f(y) describing
this preference should be larger than or equal to some positive threshold δ > 0.

To describe the corresponding algorithm, let us recall the derivation of the
usual back-propagation algorithm.

3 The Usual Back-Propagation Algorithm: A
Brief Reminder

Main idea behind the usual back-propagation. The result of applying a
3-layer neural network to inputs x1, . . . , xn has the form

f(x) =

K∑
k=1

Wk ·Xk −W0 (1)

where K is the total number of neurons in the hidden layer, and the output of
each of the K hidden neurons has the form

Xk = s0

(
n∑

i=1

wki · xi − wk0

)
, (2)

the activation function s0(z) has the form

s0(z) =
1

1 + exp(−z)
, (3)

3



and Wk and wki are parameters that need to be determined in the process of
training the network.

For each tuple x = (x1, . . . , xn), we want to result f(x) of applying the
neural network to be as close to the observed value z as possible. A natural
way to describe this requirement “to be as close as possible” is to minimize the
square

J = (∆z)2 (4)

of the difference
∆z

def
= f(x)− z. (5)

The simplest way to minimize a function J is to use gradient descent, in
which, for every parameter a, we replace its original value with the new value
a+∆a, where

∆a = −λ · ∂J
∂a

, (6)

for some value λ.
This is exactly back-propagation. To be more precise, back-propagation is an

algorithm that enables us to efficiently compute all these changes in parameters.
Let us describe how this algorithm works.

From the main idea to exact formulas. Let us start with the parameter
W0. Because of the chain rule, we have

∂J

∂W0
= 2 ·∆z · ∆z

∂W0
. (7)

Here, ∆z = f(x)− z, where
∂f(x)

∂W0
= −1

and z does not depend on W0 at all. Thus,

∆z

∂W0
= −1,

and the formula (7) takes the form

∂J

∂W0
= −2 ·∆z. (8)

Thus,

∆W0 = −λ · ∂J

∂W0
= 2 · λ ·∆z. (9)

This formula can be simplified if we denote α
def
= 2λ, then

∆W0 = α ·∆z. (10)

Next, let is consider the parameter Wk. Here,

∂J

∂Wk
= 2 ·∆z · ∆z

∂Wk
= 2 ·∆z · ∆f(x)

∂Wk
= 2 ·∆z ·Xk. (11)

4



By comparing the formulas (8) and (11), we conclude that

∂J

∂Wk
= −Xk · ∂J

∂W0
.

Multiplying both sides of this equality by −λ, we conclude that

∆Wk = −Xk ·∆W0. (12)

Let us now consider the parameter wk0. In the formula for f(x) – and thus,
in the formula for ∆z = f(x) − z – the only term that depends on wk0 is the
term Xk. Thus, we get

∂J

∂wk0
=

∂J

∂Xk
· ∂Xk

∂wk0
. (13)

Here,
∂J

∂Xk
= 2 ·∆z · ∂f(x)

∂Xk
= 2 ·∆z ·Wk. (14)

On the other hand, due to the chain rule,

∂Xk

∂wk0
= s′0

(
n∑

i=1

wki · xi − wk0

)
· (−1). (15)

By differentiating the function s0(z), we conclude that s
′
0(z) = s0(z)·(1−s0(z)).

Since here s0

(
n∑

i=1

wki · xi − wk0

)
= Xk, the formula (14) takes the form

∂Xk

∂wk0
= −Xk · (1−Xk). (16)

Substituting formulas (14) and (16) into the formula (13), we conclude that

∂J

∂wk0
= −2 ·∆z ·Wk ·Xk · (1−Xk). (17)

By comparing the formulas (17) and (11), we conclude that

∂J

∂wk0
=

∂J

∂Wk
·Wk · (1−Xk). (18)

Multiplying both sides of this equality by −λ, we conclude that

∆wk0 = −Wk · (1−Xk) ·∆Wk. (19)

Finally, let us consider each of the remaining parameters wki. Here,

∂J

∂wki
=

∂J

∂Xk
· ∂Xk

∂wki
, (20)

where
∂Xk

∂wki
= s′0

(
n∑

i=1

wki · xi − wk0

)
· xi. (21)

5



By comparing the formulas (15) and (21), we conclude that

∂Xk

∂wki
= −xi ·

∂Xk

∂wk0
. (22)

Multiplying both sides of this equality by
∂J

∂Xk
, and taking into account formulas

(20) and (13), we conclude that

∂J

∂wki
= −xi ·

∂J

∂wk0
.

Multiplying both sides of this equality by −λ, we conclude that

∆wki = −xi ·∆wk0. (23)

Thus, we arrive at the following algorithm.

Resulting formulas. We start with some values of Wk and wki.
Then, we process all the tuples x for which we know the desired result z one

by one. The processing of each tuple consists of two stages.
First, we perform forward computation:

• first, for each k from 1 to K, we compute

Xk = s0

(
n∑

i=1

wki · xi − wk0

)
; (24)

• then, we compute f(x) =
K∑

k=1

Wk ·Xk −W0.

After that, we perform backward computation:

• first, we compute ∆z = f(x)− z;

• then, we compute ∆W0 = α ·∆z;

• after that, we compute ∆Wk = −Xk ·∆W0;

• then, we compute ∆wk0 = −Wk · (1−Xk) ·∆Wk;

• after that, we compute ∆wki = −xi ·∆wk0;

• finally, we update the values of the weights:

W new
0 = W0 +∆W0, W new

k = Wk +∆Wk,

wnew
k0 = wk0 +∆wk0, and wnew

ki = wki +∆wki.

We repeat this two-stage procedure for every tuple.
Once we have cycled through all the tuples, we cycle through each tuple

again and again – until the process converges, i.e., until for each tuple, the
absolute value of the difference f(x)− z is smaller than some small number δ.

6



4 A Modification of the Back-Propagation Al-
gorithm Enabling It To Learn Preferences

Main idea. We would like the neural network to learn the person’s preferences.
Specifically, we would like to learn the person’s objective function f(x) for which
x is preferred to y if and only if f(x)− f(y) ≥ δ.

As the input to the desired learning algorithm, we have a list of pairs of tuples
(x, y) for which the person prefers x. If for this tuple, we have f(x)− f(y) < δ,
then we need to modify the parameters of the neural network so as to increase
the difference f(x)− f(y).

The results of applying a 3-layer neural network to the tuples x = (x1, . . . , xn)
and y = (y1, . . . , yn) have the form

f(x) =
K∑

k=1

Wk ·Xk −W0 (24)

and

f(y) =
K∑

k=1

Wk · Yk −W0, (25)

where

Xk = s0

(
n∑

i=1

wki · xi − wk0

)
(26)

and

Yk = s0

(
n∑

i=1

wki · yi − wk0

)
. (27)

The difference J
def
= f(x)− f(y) that we want to increase has the form

J = f(x)− f(y) =
K∑

k=1

Wk · (Xk − Yk). (28)

We see that this difference does not depend on W0. Thus, it make sense to
ignore W0, e.g., to take W0 = 0. This makes sense since f(x) is the objective
function whose only purpose is to describe preferences, and adding a constant
W0 to the objective function does not change the corresponding order between
the alternatives.

To increase the function J , we will use the gradient ascent, in which, for
every parameter a, we replace its original value with the new value a + ∆a,
where

∆a = λ · ∂J
∂a

, (29)

for some value λ. Here, J = f(x)− f(y), so

∂J

∂a
=

∂f(x)

∂a
− ∂f(y)

∂a
. (30)

7



Thus, the formula (29) takes the form

∆a = ∆xa−∆ya, (31)

where

∆xa = λ · ∂f(x)
∂a

(32)

and

∆ya = λ · ∂f(y)
∂a

. (33)

Let us show how, similarly to the usual back-propagation, we can efficiently
compute all these changes in parameters.

From the main idea to exact formulas. Let us start with a parameter Wk.
Here,

∂f(x)

∂Wk
= Xk, (34)

and thus,
∆xWk = λ ·Xk. (35)

Similarly,
∆yWk = λ · Yk. (36)

Let us now consider the parameter wk0. In the expression for f(x), the only
term depending on wk0 is the term Wk ·Xk. Thus,

∂f(x)

∂wk0
= Wk · ∂Xk

∂wk0
. (37)

From the formula (16) for the usual back-propagation, we know that

∂Xk

∂wk0
= −Xk · (1−Xk), (37)

and thus,
∂f(x)

∂wk0
= −Wk ·Xk · (1−Xk). (38)

Comparing the expressions (38) and (34), we conclude that

∂f(x)

∂wk0
= −Wk · (1−Xk) ·

∂f(x)

∂Wk
. (39)

Multiplying both sides of this equality by λ, we conclude that

∆xwk0 = −Wk · (1−Xk) ·∆xWk. (40)

Similarly,
∆ywk0 = −Wk · (1− Yk) ·∆yWk. (41)

8



Finally, let us consider each of the remaining parameters wki. Here,

∂f(x)

∂wki
= Wk · ∂Xk

∂wk0
. (42)

From the formula (22), we know that

∂Xk

∂wki
= −xi ·

∂Xk

∂wk0
. (43)

Multiplying both sides of this equality by Wk and taking into account formulas
(42) and (37), we conclude that

∂f(x)

∂wki
= −xi ·

∂f(x)

∂wk0
. (44)

Multiplying both sides of this equality by λ, we conclude that

∆xwki = −xi ·∆xwk0. (45)

Similarly,
∆ywki = −yi ·∆ywk0. (46)

Thus, we arrive at the following algorithm.

Resulting formulas. We start with some values of Wk and wki.
Then, we process all the pairs of pairs (x, y) for which we know that the

person prefers x to y. The processing of each pair consists of two stages.
First, we perform forward computation:

• first, for each k from 1 to K, we compute

Xk = s0

(
n∑

i=1

wki · xi − wk0

)
(47)

and

Yk = s0

(
n∑

i=1

wki · yi − wk0

)
; (48)

• then, we compute f(x) =
K∑

k=1

Wk ·Xk and f(y) =
K∑

k=1

Wk · Yk.

After that, if f(x)− f(y) < δ, we perform backward computation:

• first, for each k, we compute ∆xWk = λ ·Xk and ∆yWk = λ · Yk;

• then, we compute

∆xwk0 = −Wk · (1−Xk) ·∆xWk and ∆ywk0 = −Wk · (1− Yk) ·∆yWk;

9



• after that, we compute ∆xwki = −xi ·∆xwk0 and ∆ywki = −yi ·∆ywk0;

• finally, we update the values of the weights:

W new
k = Wk +∆xWk −∆yWk,

wnew
k0 = wk0 +∆xwk0 −∆ywk0, and wnew

ki = wki +∆xwki −∆ywki.

We repeat this two-stage procedure for every pair of tuples.
Once we have cycled through all the pairs, we cycle through each pairs again

and again – until the process converges.

Comment. Ideally, we should cycle until we get f(x) − f(y) ≥ δ for all the
pairs. However, a person may have been somewhat inconsistent, and there may
be situations in which this person preferred x to y, y to u, and u to x. In such
cases, it is not possible to have a function f(x) for which always x is preferred to
y if f(x) > f(y). With this possibility in mind, it is better to stop the iterations
when the weights Wk and wki stop changing, i.e., when the values of the weights
at the end of the cycle are sufficiently close to the values of these weight at the
beginning of this cycle.

5 Alternative Algorithms

Idea. Let a1, . . . , am be quantities that characterize each alternative. We want
to describe an objective function f(a1, . . . , am) that describes the person’s pref-
erences: a is better than b if and only if f(a) > f(b).

In the previous section, we described a general neural network-based algo-
rithm for finding this objective function. An alternative idea is to take into
account that usually, the dependence of the objective function on the quantities
ai is smooth. Thus, we can expand the unknown function in Taylor series and
keep only small-order terms in this expansion. For example, if we only keep

linear terms, we get a general expression f(a) = c0 +
m∑
i=1

ci · ai. If we keep

quadratic terms, we get an expression

f(a) = c0 +
m∑
i=1

ci · ai +
∑
i≤j

cij · ai · aj ,

etc. In general, we get an expression of the type

f(x) =
n∑

i=1

Ci · xi, (49)

where xi are the corresponding monomials:

• expressions ai in the linear case,

• expressions ai and ai · aj in the quadratic case, etc.

10



In this case, to determine the objective function, we need to find the values of
the corresponding parameters Ci.

In terms of the objective function (49), the condition f(x)−f(y) ≥ δ becomes
a linear inequality

n∑
i=1

Ci · (xi − yi) ≥ δ. (50)

Thus, we can use linear programming [7, 9] – a known method for solving
systems of linear inequalities – to find the corresponding values Ci. Thus, we
arrive at the following algorithm.

First alternative algorithm. Once we have listed the quantities a1, . . . , am
that describe each alternative, we select an order d ≥ 1, and describe each
alternative by the values x1, . . . , xn of all possible monomials xi = aj1 · . . . · ajq
of order q ≤ d in terms of the quantities aj ; here, j1 ≤ . . . ≤ jq.

To each pairs (x, y) for which x was preferred to y, we form a linear inequality

n∑
i=1

Ci · (xi − yi) ≥ δ, (50)

with unknown values Ci. We then use linear programming to find the values
C1, . . . , Cn that satisfy all these inequalities; see, e.g., [3, 4].

Once the values Ci are found, we predict that an alternative x will be pre-
ferred to an alternative y if the inequality (50) holds.

Need to go beyond the first alternative algorithm. The above first al-
ternative algorithm assumes that the person always makes rational preferences.
In real life, as we have mentioned earlier, people sometimes make inconsistent
choices. In this case, it is not possible to find the coefficients Ci for which all
the inequalities (50) will be satisfied.

To deal with such realistic situations, we can use the gradient ascent ap-
proach similar to the one that we use in the neural networks case. For the
expression

f(x)− f(y) =

n∑
i=1

Ci · (xi − yi),

the gradient ascent method takes the form

Ci → Ci + λ · ∂J

∂Ci
= λ · (xi − yi).

Thus, we arrive at the following algorithm.

Second alternative algorithm. We start with some values of the parameters
C1, . . . , Cn.

Then, we process all the pairs of tuples (x, y) for which we know that the
person prefers x to y. For each pair, if

n∑
i=1

Ci · (xi − yi) < δ,

11



then we replace each value Ci with the new value

Cnew
i = Ci + λ · (xi − yi).

Once we have cycled through all the pairs, we cycle through each pairs again
and again – until the process converges, i.e., until the values Ci do not change
much from the end of one cycle to the end of another cycle.

Third alternative algorithm: using linear discriminant analysis. We
would like to find the coefficients Ci for which C · (x − y) > 0 for all pairs for
which x is preferred to y, i.e., where we denoted C = (C1, . . .), x = (x1, . . .),

y = (y1, . . .), and a · b def
= a1 · b1 + a2 · b2 + . . .

Similarly, we should have C · (y − x) < 0 for all such pairs (x, y). From
the mathematical viewpoint, this problem is similar to the linear discriminant
analysis (see, e.g., [1, 3, 4]), when we have two sets S and S ′ and we need to
find a hyperplane that separates them, i.e., a vector C such that C · S ≥ 0 for
all S ∈ S and A · S′ ≤ 0 for all S′ ∈ S ′. In our case, S is the set of all vectors
x− y, and S′ is the set of all vectors y − x.

The standard way of solving this problem is to compute the mean µ of all
the vectors S ∈ S, the covariance matrix Σ, and then to take C = Σ−1µ. So, in
our case, we should do the following:

• compute all the vectors x − y corresponding to the pairs (x, y) in which
the person preferred x to y; let M be the total number of such pairs;

• compute the average µ =
1

M
·
∑

(x− y) of these vectors;

• compute the corresponding covariance matrix Σ with components

Σab =
1

M
·
∑
x

(xa − ya − µa) · (xb − yb − µb);

• compute the vector C formed by the desired coefficients Ci as C = Σ−1µ,
i.e., as a solution to a linear system ΣC = µ.

Acknowledgments

This work was supported by the National Science Foundation grants HRD-
0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-
0926721, and by an award “UTEP and Prudential Actuarial Science Academy
and Pipeline Initiative” from Prudential Foundation.

References

[1] A. Afifi and S. May, Practical Multivariate Analysis, Chapman & Hall/CRC,
Boca Raton, Florida, 2011.

12



[2] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
New York, 2006.

[3] S. M. Escarzaga, C. Tweedie, O. Kosheleva, and V. Kreinovich, “How to pre-
dict nesting sites and how to measure shoreline erosion: fuzzy and probabilis-
tic techniques for environment-related spatial data processing”, Proceedings
of the 2016 World Conference on Soft Computing, Berkeley, California, May
22–25, 2016.

[4] S. M. Escarzaga, C. Tweedie, and V. Kreinovich, “How to predict nesting
sites?”, Journal of Uncertain Systems, 2017, Vol. 11, to appear.

[5] P. C. Fishburn, Utility Theory for Decision Making, John Wiley & Sons Inc.,
New York, 1969.

[6] R. D. Luce and R. Raiffa, Games and Decisions: Introduction and Critical
Survey, Dover, New York, 1989.

[7] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Springer,
Cham, Switzerland, 2016.

[8] H. Raiffa, Decision Analysis, Addison-Wesley, Reading, Massachusetts,
1970.

[9] P. J. Vanderbei, Linear Programming: Foundations and Extensions,
Springer, New York, 2014.

13


	University of Texas at El Paso
	DigitalCommons@UTEP
	12-2016

	A Modification of Backpropagation Enables Neural Networks to Learn Preferences
	Martine Ceberio
	Vladik Kreinovich
	Recommended Citation


	tmp.1495225973.pdf.SJphg

