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Abstract

Many dynamical phenomena can be modeled as ordinary or partial differential equations. A way to
find solutions of such equations is to discretize them and to solve the corresponding (possibly) nonlinear
and large systems of equations; see [19].

Solving a large nonlinear system of equations is very computationally complex due to several numerical
issues, such as high linear-algebra cost and large memory requirements. Model-Order Reduction (MOR)
has been proposed as a way to overcome the issues associated with large dimensions, the most used
approach for doing so being Proper Orthogonal Decomposition (POD); see [25]. The key idea of POD is
to reduce a large number of interdependent variables (snapshots) of the system to a much smaller number
of uncorrelated variables while retaining as much as possible of the variation in the original variables.

In this work, we show how intervals and constraint solving techniques (see [8, 18, 22]) can be used
to compute all the snapshots at once and propose a new model-order reduction technique (that we call
I-POD). This new process gives us two advantages over the traditional POD method: 1. handling un-
certainty in some parameters or inputs; 2. reducing the snapshots computational cost. We illustrate our
proposed method, I-POD, on several nonlinear problems.
c⃝2017 World Academic Press, UK. All rights reserved.
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1 Introduction

Many real life phenomena or situations can be represented by mathematic models. Because of the dynamical
nature of these phenomena, the associated models could be, for instance, partial differential equations (PDEs).
Such differential equations arise in many engineering problems describing phenomena such as the distribution
of heat in a given rod or plate over time (heat equation), the description of waves like those of vibrating strings,
and sound and water waves (wave equation), gas dynamics and traffic flow (Burgers’ equation); see [26, 27].

A way to find an approximation of the solution of differential equations, either ordinary or partial, is to
discretize the domain of the solution and to form a system of algebraic equations: the resulting system of
equations can be linear or nonlinear, depending on the nature of the PDE.

In order to obtain a good accuracy in the approximation of the sought solution, the domain has to be
discretized in many elements and nodes, leading to a large system of equations. Now common issues in
solving such systems are: 1. not knowing about the existence and/or uniqueness of the solution of the system
of equations, 2. storage, 3. high computational cost, and 4. rounding errors.

To overcome these issues, several techniques have been developed to allow to solve a smaller system with
similar features instead of the large original one, hence addressing storage and computation issues. This is
done by finding a subspace where an acceptable approximation of the solution of the system of equations
lie. This process of identifying such subspace and reducing a large problem to a smaller one is known as
Model-Order Reduction (MOR).

Proper Orthogonal Decomposition (POD) is a broadly used and effective method to identify a
reduced subspace and reduce the original large problem to a much smaller one. This method is based on
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Principal Component Analysis (PCA) [17, 21, 24]. The idea behind POD consists in the following: solve
the large nonlinear system for a certain number of input parameter values so as to generate a broad set of
behaviors of the system at hand; extract from these runs meaningful features; use these as a reduced basis;
and solve the original system on the reduced basis only, hence yielding much faster performance and a good
quality approximation (if the reduced basis was designed properly).

Although POD is one of the most popular approaches to reducing the order of large systems of equations,
it presents several disadvantages, the main drawback being that it requires a series of offline computations
in order to form the matrix of snapshots. The quality of the resulting reduced basis heavily depends on
the choice of parameters and inputs during the offline phase, and on the accuracy of these over which the
snapshots are computed.

In this work, we propose an alternative method for reducing the order of large systems of equations. It
explores the idea of computing snapshots as a result of interval computations that we then sample: this
leads us to one – interval – solving process as opposed to solving the large system as many times as we need
snapshots. This led to shaping our proposed method, which we called Interval-POD (I-POD). Let us note
that I-POD has advantages beyond the mere computations of snapshots: if POD can handle intervals, it
can therefore handle uncertainty as well. This would allow models to factor in uncertainty while still being
processed as a reduced-order model. Our preliminary experiments on a series of nonlinear problems show
promise.

2 Background

Let us start by recalling the type of problems that we are attempting to solve. Many real-life phenomena are
modeled and result in very large (most likely) nonlinear systems of equations that need to be solved. Solving
these problems boils down to finding the zeroes of large-dimensional functions. Traditionally, finding zeroes
of functions is achieved via the use of Newton methods.

In this section, we review basic notions about the components that motivate and make up our approach.
Namely, we start by recalling the Newton’s approach, which motivates the need to Model-Order Reduction.
We then go over the MOR concept. Finally, we review interval computations and interval constraint solving
techniques, as they are essential to our proposed I-POD.

2.1 The Newton Method

The Newton method is an iterative procedure that finds the zeroes of continuously differentiable functions
F : Rn → Rn. The formulation of the method is given by:

JF (xn)(xn+1 − xn) = −F (xn) (1)

where JF (xn) is the n× n Jacobian matrix of F .
If F is twice differentiable and the Hessian ∇2F (x) is Lipschitz continuous in a neighborhood of a solution

x∗ then:

1. if the initial point x0 is sufficiently close to x∗, the sequence of iterations converges to x∗; and

2. the rate of convergence of {xk} is quadratic.

The Newton method is outlined in Table 1:

Table 1: Newton method outline

Given an initial point x0

for i=1 until convergence

Compute F = F (x0) and J = JF (x0)
Solve the linear system of equations: J∆x = −F
Compute: xi+1 = xi +∆x

end for
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The Newton method converges if certain conditions are satisfied; for example, if a stationary initial point
is chosen or if the approach outlined above enters in a cycle, the Newton method will not converge. Also, if
the Jacobian matrix is singular or if any of its entries is discontinuous at the root, the convergence may fail.
If the Jacobian is singular at the root of the function or the Hessian is not defined at it, the process may
converge but not in q-quadratic order.

In addition to the above limitations of the Newton’s approach, let us recall that the systems that are being
considered for solution are of very large size. Not meeting a q-quadratic order of convergence is much more
critical on such large spaces than it would be on smaller spaces.

To overcome all issues above mentioned, the solution is sought on a subspace where the convergence
conditions are met, hence Model-Order Reduction.

2.2 Model-Order Reduction

The main idea of the concept of Model Order Reduction (MOR) is as follows:

Let T : V → V be a bijective linear transformation. Then for every b ∈ V , there exists a unique x ∈ V
such that T (x) = b. Every linear transformation has a matrix representation [12]. In this case, let us call A
the matrix representation of T . Thus, finding x such that T (x) = b is equivalent to solving the linear system:

Ax = b. (2)

If the dimension of V is n, then (2) is a n× n linear system of n equations and n unknowns.

We can assure that there exists W , a subspace of V , whose dimension is k ≪ n and such that x ∈ W .
This is true because, in particular, the subspace spanned by {x} is a subspace of V , which contains x and
whose dimension is 1 ≪ n.

Since W is a subspace of V , there exists a base B = {w1, w2, . . . , wk} such that every element w ∈ W can
be expressed as a linear combination of the elements of B [5]. In particular, if w = x,

x =
k∑

i=1

yiwi. (3)

Since every base uniquely determines a subspace of V , we can, without loss generality, speak about subspace
W and its base without difference. By writing (3) in matrix form, we obtain

Wy = x. (4)

After substituting (4) in (2), we have:

(AW )y = b, (5)

that can be solved using the normal equation [3]

(AW )T (AW )y = (AW )T b, (6)

which is itself a k × k linear system of equations. After we identify y, we can use (4) to find x.

Once the subspace is found, the approximation of the solution is given as the projection of it on the
subspace obtained. This method truncates the solution of the original system to an appropriate basis. Let
us illustrate this method by considering a basis transformation T that maps the original n-dimensional state
space x into a vector that we will denote by

T (x) =

(
T1(x)
T2(x)

)
=

(
x̂
x̃

)
where x̂ is k-dimensional. Suppose that T has at least a right-inverse. Let us denote S = T−1 then S can be
written as

S = (S1 S2)



Journal of Uncertain Systems, Vol.11, No.2, pp.84-103, 2017 87

and

I =

(
T1

T2

)
(S1 S2)

=

(
T1S1 T1S2

T2S1 T2S2

)
(7)

=

(
Ik 0
0 In−k

)
. (8)

Since T1S1 = Ik, we have Π = S1T1 is an oblique projection along the kernel of T1 onto the k-dimensional
subspace that is spanned by the columns of the matrix S1.

Figure 1: An oblique projection can be see as the shadow cast by objects on the ground when the sun is not
directly vertical. Image taken from the site: http://www.schoolkitchengarden.com.au/design-your-garden/

Let
dx

dt
= f(x, u),

y = g(x, u),
x(t0) = x0

(9)

be the dynamical system, where u is the input of the system, y is the output, x the so-called state variable.
If we substitute the projection into the dynamical system 9, we obtain

dx̂

dt
= T1f̂(S1x̂+ S2x̃, u),

y = ĝ(S1x̂+ S2x̃, u).
(10)

The approximation occurs when we delete the terms involving x̃

dx̂

dt
= T1f̂(S1x̂, u),

y = ĝ(S1x̂, u).
(11)

In order to obtain a good approximation to the original system, the term S2x̃ must be sufficiently small.
In the nonlinear case, F (x) = 0, the variable x is substituted by x = Wy. The nonlinear system of

equations becomes the overdetermined nonlinear system: F̄ (y) = (F ◦W )(y) = F (Wy) = 0.

Rk W - Rn

Rn.

F

?

F̄
-

The Jacobian matrix of F̄ is defined as:
JF̄ (y) = JF (Wy)W. (12)

After using (12), the algorithm shown in Table 1 becomes the Gauss-Newton algorithm shown in Table 2.
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Table 2: Gauss-Newton method outline

Given an initial point y0 ∈ Rk

for i=1 until convergence

Compute F̄ = F (Wy0) and JF̄ = JF (Wy0)W
Solve the linear system of equations: (JF̄W∆)y = −JF̄
Compute: yi+1 = yi +∆y

end for

x = Wy∗

2.3 Interval Constraint Solving Techniques (ICST)

The method that we are proposing in this article consists in expanding POD-based MOR techniques to interval
computations (as we will describe in Section 4). Indeed, we aim to group the (possibly many) computational
processes over the reals required to generate all snapshots into one single computational process over intervals
that encompasses all computations over the reals.

In this subsection, we give a brief overview of interval computations and how to solve systems of equations
that involve intervals; for more details about the field, please see [22].

2.3.1 Computations with Intervals

Let us start by pointing that in what follows, when mentioning intervals, we actually mean closed intervals.
In addition, for simplicity, when we talk about intervals, we will talk about real-value-bounded intervals (not
just floating-point-bounded intervals as is commonly the case when implemented on a computer). So in this
work, an interval X is defined as follows:

X = [X, X] = {x ∈ R : X ≤ x ≤ X}. (13)

Operations on intervals are simply defined as follows: Since x ∈ X means that X ≤ x ≤ X, and y ∈ Y means
that Y ≤ y ≤ Y the followings operations are defined based on its infimum and supremum:

Addition: X + Y = [X + Y ,X + Y ] (14)

Substraction: X − Y = [X − Y ,X − Y ] (15)

Multiplication: X · Y = [minS,maxS], where S = {XY ,XY ,XY ,XY } (16)

As we observe above, combining intervals with addition, subtraction, and multiplication, always results in
one interval. However, it is not always the case without extra care. For instance, the division of an interval
by another one that contains 0 should result in two disjunct intervals. To avoid such cases with compromise
the nature of traditional interval computations (according to which combining intervals should result in an
interval), we generalize the combination of two intervals as follows:

∀X,Y intervals, X ⋄ Y = �{x ⋄ y, where x ∈ X and y ∈ Y } (17)

where ⋄ stands for any arithmetic operator, including division, and � represents the hull operator.

More generally, when carrying out more general computations involving intervals, e.g., computing the
interval value of a given function f : Rn → R on interval parameters (or a mix of interval and real-valued
parameters), we have the following property:

f(X1, · · · , Xn) ⊆ �{f(x1, · · · , xn), where x1 ∈ X1, . . . , xn ∈ Xn} (18)

where f(X1, · · · , Xn) represents the range of function f over the domain X1 × · · · × Xn and
�{f(x1, · · · , xn), where x1 ∈ X1, . . . , xn ∈ Xn} represents the smallest closed interval enclosing this range.
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Computing the exact range of f over intervals is therefore a very hard problem and instead, we approximate
the range of f over domains using what we call an interval extension of f , which is in fact a surrogate interval
function F .

Interval extensions of a given function f have to satisfy the following (very lose) property:

f(X1, · · · , Xn) ⊆ F (X1, · · · , Xn) (19)

which to some extent would allow F to be the function that maps any input to the interval [−∞,+∞]. More
pragmatically, the aim is to identify a function F that does not dramatically overestimate the range of our
original function f (the closer to the range the better of course, but cost of achieving better range is also an
issue). Many interval extensions exists. The most common one is the so-called natural extension, which is a
simple interval extension of the syntactical expression of f : arithmetic operations are evaluated using interval
rules as shown above, and any other single operator – e.g., power – has its own interval extension; see [22] for
more details. Other extensions include Trombettoni et Al.’s occurrence grouping approach [1]. In this work,
we use interval computations provided in RealPaver [8] and the natural extensions this software provides.

2.3.2 How to Solve Nonlinear Equations with Intervals?

The premise of our approach is that we will replace several real-valued computational processes by one
interval-based computational process by abstracting one real-valued parameter into an interval parameter.
Each process (real-valued or interval) consists in solving a (most likely) nonlinear system of equations. In this
subsection, we give the reader an overview of the way we proceed to solve a nonlinear system of equations
that involves intervals.

We choose to solve nonlinear equations using interval constraint solving techniques. Constraint solving
techniques allow to solve systems of constraints. Generally speaking, a constraint describes a relationship
that its variables need to satisfy. A solution of a constraint is an assignment of values to the variables of the
given constraint such that the relationship is satisfied.

In our case, each of our nonlinear equations fi(x1, · · · , xn) = 0 is a constraint: it establishes a relationship
that the values of the variables should satisfy, in this case so that fi(x1, · · · , xn) be equal to 0. Our system of
nonlinear equations is therefore a system of constraints and our goal is to find values of the variables of this
system that are such that: ∀i, fi(x1, · · · , xn) = 0.

Constraint solving techniques allow us to identify such values of the parameters that satisfy the constraints.
Interval constraint solving techniques [20, 13] produce a solution set (set of the solutions of the constraint
system) that is interval in nature (this is what you will see in the graphs plotting our experimental results in
Section 5): it is a set of multi-dimensional intervals (or boxes whose dimension is n, the number of variables)
that is guaranteed to contain all the solutions of the constraint problem (in our case, of the nonlinear system
of equations).

The guarantee of completeness provided by interval constraint solving techniques comes from the under-
lying solving mode: a branch-and-bound [15] (or branch-and-prune for faster convergence [4]) approach that
uses the whole search space as a starting point and successively assess the likeliness of finding solutions in the
given domain (via interval computations) and possibly (if Branch and Prune) reduce it, and discard domains
that are guaranteed not to contain any solution. Note: while Branch-and-Bound algorithms only assess do-
mains for likeliness of containing a solution (it is a keep or discard approach), Branch-and-Prune algorithms
first use the constraints to reduce the domains to consistent domains (using appropriate consistency techniques
based on interval computations) and the outcome (empty domain or not, small enough or not to be called a
solution) decides whether to continue exploring the domain or not.

For instance, if on a given domain D ⊂ R, any of the fi is such that 0 ̸∈ Fi(D), where Fi is an interval
extension of fi, then we can conclude that there is no zero of our system of equations in D and discard it
altogether. In Table 3, we outline the generic Branch-and- Bound approach, which is the underlying principle
of search in interval constraint solving techniques, and allows to guarantee completeness of the search.

Using interval computations carries a lot of advantages, one of which being that the search can be guaran-
teed to be complete and that since intervals are used (interval computations to assess whether a domain is a
viable option of not), uncertainty can easily be added and seamlessly handled. This however comes at a cost:
interval solving processes are usually more computationally taxing that regular real-valued ones. Nevertheless,
in what follows we will show that, when comparing our interval-based approach to real-valued processes that
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Table 3: Generic branch-and-bound algorithm

Input: System of constraints C = {c1, . . . , ck}, a search space D0.
Output: A set Sol of interval solutions (boxes of size n, the number of variables)
Set Sol to empty
If ∀i, 0 ∈ Fi(D0) then:

Store D0 in some storage S1

While (S is not empty) do:
Take D out of S
If (∀i, 0 ∈ Fi(D)) then:

If (D is still too large2) then:
Split3 D in D1 and D2

Store D1 and D2 in S
Else:

Store D in Sol
Return Sol

have to be repeated countless times, then the extra cost of interval computations is counterbalanced and our
approach more computationally effective (as shown in Section 5).

3 Proper Orthogonal Decomposition

In this section, we study the statistical procedure of Principal Component Analysis (PCA), which uses or-
thogonal transformation to convert a set of observations of possibly correlated Random Variables into a set
of linearly uncorrelated ones with the largest possible variance, named principal components. The number of
principal components is less than or equal to the number of the original random variables.

Using the same procedure as in (PCA), it is possible to find a set of linearly independent vectors from a
set of linearly dependent ones, whose spanned space is practically the same. This procedure is named Proper
Orthogonal Decomposition (POD), which we also describe here.

3.1 Principal Component Analysis

When information from a data sample is collected, usually we take the maximum number of variables. How-
ever, if we take too many variables from a data sample, for instance 20 variables, we must consider

(
20
2

)
= 190

possible correlation coefficients. If you have 40 variables that number is increased to 780. Obviously, in
this case it is difficult to visualize relationships between variables. Another problem that arises is the strong
correlation that often occurs between variables: if we take too many variables (which generally happens when
much is not known about data, or we are only interested in exploratory tests), it is normal that they are
related or they measure the same thing under different viewpoints. For example, in medical studies, blood
pressure at the heart’s outlet and out of the lungs are strongly related.

Therefore, it is necessary to reduce the number of variables. It is important to highlight that the concept
of major information is related to the greater variability of the data or variance. The greater the variability
(variance) of the data, the more information this data has.

Studying the relationships that exist between p correlated variables (which commonly measure information)
transforms the original set of variables in another new set of uncorrelated variables together (that has no
repetition or redundancy on the information) called a set of principal components.

3.2 Principal Components

Let us consider a number of variables X = (x1, x2, · · · , xn) describing a group of objects or individuals and
to calculate, from them, a new set of variables (y1, y2, · · · , yn) uncorrelated with each other, whose variances
will decrease gradually.
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Each yj (where j = 1, . . . , n) is a linear combination of the original variables x1, x2, . . . , xn, i.e

yj = v1jx1 + v2jx2 + · · ·+ vpjxn

= Xvj ,

where vTj = (v1j , v2j , · · · , vpj) is a constant vector.
To keep the orthogonality of the transformation, we impose ||vj || = 1.
The first component v1 is calculated so y1 has the greatest variance subject to the constraint that ||v1|| = 1.

The second principal component v2 is calculated so that the variables y1 and y2 are uncorrelated. Similarly
are chosen y1, y2, . . . , yp, uncorrelated with each other.

The full principal components decomposition of X can therefore be given as

Y = XV,

where V is a p× p matrix whose columns are the eigenvectors of XTX.
The principal component decomposition of X can be expressed in terms of singular value decomposition

of X. Given
X = UΣV T ,

then we have

Y = XV

= UΣV TV

= UΣ.

In practice, we initiate computations with p variables and we are left with a number of much smaller
components that collect a large percentage of the variability. For instance, we take r variables, where r is the
minimum positive integer such that: ∑r

i=1 σi∑p
i=1 σi

> tol

where tol is an approximation of 1 by defect.

3.3 Proper Orthogonal Decomposition Method

Consider a parameterized static computational model described by large-scale linear system of discrete equa-
tions

R(x, λ) = 0. (20)

Here we can see (20) as an input-output system, where λ is the input and the solution, x(λ) ∈ Rn, is the
output.

The idea behind this method is that, given a certain input, the solution x(λ) of a system contains the
behavior of the system [25]. Therefore, the set of outputs serves as a starting-point for POD. The outputs
are called snapshots and these must be given or be computed first.

Assume the set of snapshots S and the solution x(λ∗) of (9) for a particular λ∗ is in the subspace spanned
by S. We assume that the columns of S are highly correlated, so we can apply principal components analysis
(PCA) to obtain an uncorrelated number of columns, see 3.1, and thus to reduce the size of linear system of
equations.

Consider the SVD of S
S = UΣV T (21)

and
T = V Σ−1UT . (22)

Define

T1 =
k∑

i=1

viσ
−1
i uT

i ; T2 =
n∑

i=k+1

viσ
−1
i uT

i ,

S1 =
k∑

i=1

uiσiv
T
i ; S2 =

n∑
i=k+1

uiσiv
T
i .

(23)
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Conditions given by (23) are a particular case of conditions given in (7). We conclude that we get a good
approximation of (9) if S2x̃ is sufficiently small (x̃ = T2(x)) or equivalently if σi ≈ 0 for k + 1 ≤ i ≤ n.

To obtain a basis of W we have the algorithm in Table 4.

Table 4: Computing a Proper Orthogonal Decomposition basis

In: Parameter λ’s and input-output system
Out: Base of the subspace W
Solve the full-order model to several λ’s.
For each λ, take one or more snapshots, which is the solution of (9) for some values
of t, and store such snapshots in a matrix S. Compute the SVD of S: [W,Σ, V ] = svd(S).

Find k such that σ =

∑k
i=1 σi∑n
i=1 σi

> 0.99.

Consider only the k first columns and redefine W = W (:, [1 : k]).

Several problems have been solved by using this method [28]. As it has been said before, the POD is based
on Principal Components Analysis. The reader who wants to read a little more about this can find a good
source of information in [14].

4 Interval Proper Orthogonal Decomposition (I-POD)

In this section, we present our Interval POD approach to solving large nonlinear systems of equations in a
reduced subspace. Let us first recall once again the problem that we are solving.

Given a parametric system of equations (also known as the Full Order Model):

R(x, λ) = 0, λ ∈ I (24)

where R can be either linear or nonlinear function R : Rn → Rn, that might arise from the discretization of
a set of partial differential equations and I is a fixed interval. The idea behind POD is to solve (24) for a
sequence of values λi ∈ I, i.e.,

R(x, λ1) = 0,

R(x, λ2) = 0, (25)

...
...

R(x, λn) = 0,

where λi ∈ I, for i = 1, 2, . . . , n. The main idea of this method is based on the high correlation between
solutions for such values λi, so PCA techniques can be applied to obtain a smaller number of columns
uncorrelated with the greatest of accumulated variance.

In this work, we propose an interval version of POD. The original idea behind this new Interval POD is
that we aim to reduce the amount of work in solving the Full Order Model for many different values of the
input parameters (λ). Instead we suggest and experimented solving the Full Order Model once on the entire
interval containing all desirable values of λ.

This slight change in concept (many processes solving for many different values of λ vs. one process solving
for an entire interval instead) has consequences in our ability to solve the Full Order Model. Now that an
interval is part of the problem we are bound to use interval-computation-based solving techniques and we
found interval constraint solving techniques to be very practical to do so.

More specifically, we are now solving:

R(x, I) = 0, (26)

which is a nonlinear system of equations with explicit uncertainty in the shape of an interval.
We called this variation of POD the Interval Proper Orthogonal Decomposition (I-POD) method.



Journal of Uncertain Systems, Vol.11, No.2, pp.84-103, 2017 93

5 Numerical Results

In this section, we describe and report on preliminary experiments of our I-POD method on five problems.
First, we present our results on the Burgers’ equation, the Transport equation, the Lotka-Volterra problem,
and the FitzHugh-Nagumo Model. Then we go on to studying an additional problem: the Bratu’s equation,
but due to its special features, we decided to explain the obtained results in a different section. For each of
these experiments, we aim to assess the ability of I-POD to generate snapshots that yield a reduced basis
of high-enough quality that the solution of the reduced-order model yields a very small error (w.r.t. FOM
solution) in comparison to what a similar process using POD achieves. Our experiments were conducted using
MATLAB R2012b (8.0.0.783) on a laptop with 1.7 GHz intel core i7 and 8GB of RAM.

5.1 Burgers’ Equation

Consider the Burgers’ equation:
∂U(x, t)

∂t
+

∂f(U(x, t))

∂x
= g(x), (27)

where U is the unknown conserved quantity (mass, density, heat etc.), f(U) = 0.5U2 and in this example,
g(x) = 0.02 exp(0.02x). The initial and boundary conditions used with the above PDE are: U(x; 0) ≡ 1;
U(0; t) = 4, for all x ∈ [0; 100], and t > 0.

Below, in Tables 5 and 6, we describe the procedure to obtain the snapshots and the reduced basis in the
POD method for the Burgers’ equation. We will then compared it with I-POD.

Table 5: Computing a Proper Orthogonal Decomposition basis

Initialize an empty matrix where we will collect the snapshots: Snap = [], and an initial λ = 3.5.
For i= 2:100,

Solve:


∂U(x, t)

∂t
+

∂f(U(x, t))

∂x
= g(x),

g(x) = 0.02 exp(0.02x), (28)
U(x; 0) ≡ 1, for all x ∈ [0; 100],
U(0; t) = λi, for t > 0.

Collect snapshots:
From t1, t2, . . . , tn, select a subsequence4 ti1, ti2, . . . , tip.
Add new columns to the snapshot matrix Snap = [Snap U(x, ti1) U(x, ti2) . . . U(x, tip)].

Update λ: λi = λi−1 + 0.01
Apply the principal component analysis, (SVD). Snap = WΣV T .
Select from W the principal components with the greatest accumulated variance:

σ = 0.
for k=1:n compute:

σ = σ + σk∑n
j=1 σj

If σ > Tol, 0 < Tol < 1, break.
Select the first k columns of W and redefine it. W = W (:, [1, 2, . . . , k]).
The new W will be the reduced basis to apply the POD method.

We applied both previous procedures, POD and I-POD, to solve (27) and we obtained the results reported
in the Table 7. We observe that there is no significant difference between the traditional method (using POD)
and the method we propose (using I-POD) w.r.t. (1) the dimension of the subspace, (2) the time it takes
to solve the problem once we have identified the reduced basis, and (3) the relative error compared with the
FOM solution. The major two advantages of our proposed method are:

• the computational time it requires to obtain the snapshots: Our approach requires 68.52% less time
than the original one and the quality of the snapshots our method generates is comparable to that
generated by POD as observed in the relative error; and
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Table 6: Computing a Proper Orthogonal Decomposition basis using I-POD

Initialize a empty matrix where to collect the snapshots: Snap = [], and an initial λ = 3.5.

Solve:


∂U(x, t)

∂t
+

∂f(U(x, t))

∂x
= g(x),

g(x) = 0.02 exp(0.02x), (29)
U(x; 0) ≡ 1, for all x ∈ [0; 100],
U(0; t) = I, for t > 0.

The solution of (29) is an interval solution, i.e, for any 1 ≤ x0 ≤ 100, 0 ≤ t0 ≤ 50,
the value U(x0, t0) is an interval. The infimum of such interval is defined Ul(x0, t0) and Ur(x0, t0)
is the supremum. In that case, for all 1 ≤ x ≤ 100, 0 ≤ t ≤ 50, U(x, t) ∈ [Ul(x, t), Ur(x, t)],
see Figure 3.

For i=1:100

Compute:
U(x, t) = (Ur(x, t)− Ul(x, t))(λ− 3.5) + Ul(x, t)

Collect snapshots:
From t1, t2, . . . , tn, select a subsequence5 ti1, ti2, . . . , tip.
Add new columns to the snapshot matrix Snap = [Snap U(x, ti1) U(x, ti2) . . . U(x, tip)].

Update λ: λi = λi−1 + 0.01
Apply the principal component analysis, (SVD). Snap = WΣV T .
Select from W the principal components with the greatest accumulated variance:

σ = 0.
for k=1:n compute:

σ = σ + σk∑n
j=1 σj

If σ > Tol, 0 < Tol < 1, break.
Select the first k columns of W and redefine it. W = W (:, [1, 2, . . . , k]).
The new W will be the reduced basis to apply the POD method.

Figure 2: Solution of (28) for λ = 4, and some snapshots corresponding to this parameter

• the ability to handle uncertainty: the interval that contains λ, handled at once by IPOD, is similar to
uncertainty and is handled without problems. Further experiments will aim to demonstrate that IPOD
produces meaningful results also when there are other sources of uncertainty (beyond the interval for
λ).

5.2 Transport Equation

The transport equation is a partial differential equation that models the concentration of a contaminant in
the position x in at time t in a fluid that is flowing with velocity v in a thin straight tube whose ross section,
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Figure 3: Infimum and supremum of the solution of (29), and some snapshots corresponding to λ = 4 are
shown

Table 7: Comparing POD and I-POD methods in solving a particular example of Burgers’ Equation

Method FOM POD I-POD
Dimension 100 37 36

Time to solution 1.5 s 0.75 s 0.75 s
Relative error: ||ufom − urom||/||ufom|| - 4.85E − 4 5.76E − 4

denoted by A is constant. Such concentration will be denoted by U(x, t). if the function U(x, t) and its partial
derivatives of order one are continuous functions of x and t, and the fluid velocity v and the cross section of
the tube, A, are constants, then the Transport Equation is reduced to:

∂U

∂t
+ v

∂U

∂x
= 0

(x, t) ∈ Ω

(30)

Where Ω is a convex domain. In particular, we solve (30) with U(x, t) subject to the following boundary
and initial conditions:

U(0, t) = u(t) = − sin(2πt) + sin(πt) (31)

U(x, 0) = u(x) = sin(2πx) + sin(πx) (32)

for all t ∈ [0, 1], and x ∈ [0, 1].
Using v ∈ [0.5, 1.5] as the input parameter, we can proceed, similarly to how we did in the Burger Equation

case, and compute, first, a basis using POD method, and later, using IPOD.
Comparative values are presented in Table 8:
In this experiment, we observed that even when the dimension of the subspace obtained with IPOD (76) is

larger than the subspace obtained with POD (12) , once, both basis are known, solving the reduced problem
from POD or I-POD takes about the same amount of time. The main achievement in this experiment is that
we were able to handle a fair amount of uncertainty in the parameter v (we solved the FOM with v = [0.5, 1.5]
as part of our IPOD process). What helped us handle such uncertainty was the fact that when the Transport
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Table 8: Comparing POD and I-POD methods in solving a particular example of transport equation

Method FOM POD I-POD
Dimension 100 12 76

Time to solution 0.15 s 0.022 s 0.042 s
Relative error: ||ufom − urom||/||ufom|| - 7.97E − 5 1.81E − 5

equation (30) is discretized, we obtain a linear system of equations, which is not too hard to handle with
uncertainty.

In Figure 4, we can observe the plot of the solution of the transport equation for time-steps 20, 40, 60, 80.
In green and red are respectively the infimum and the supremum of the interval containing the solution.

Figure 4: Solution of (30) for time-steps 20, 40, 60, 80, enclosed in the interval solution

5.3 Lotka-Volterra

Consider a particular case of the Lotka-Volterra problem, which involves a model of a predator-prey system.{
y′1 = θ1y1(1− y2), y1(0) = 1.2 θ1 = 3,
y′2 = θ2y2(y1 − 1), y2(0) = 1.1 θ2 = 1.

(33)

y1 and y2 respectively represent the amount of preys and predators. In this particular example, the growth
rate of the first species reflects the effect the second species has on the population of the first species (θ1).
Similarly, the growth rate of the second species reflects the effect the first species has on the population of the
second species (θ2). The system was integrated from t0 = 0 to tm = 10. Numerical experiments were carried
out with a constant step size h = 0.1. Ranges for the parameters θ1 ∈ [2.95, 3.05] and θ2 = [0.95, 1.05] were
used as input. Comparative values are presented in Table 9:

In Figure 5, we observe the interval enclosure of (33) when θ1 = [2.95, 3.05] and θ2 = [0.95, 1.05].
The examples of the Burger’s equation (27) and the Transport equation (30) were partial differential

equations with uncertainty in one parameter. The number of unknowns was the same as the number of points
in the discretization of the domain. Problem (33) is more challenging because it is a system of two nonlinear
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Table 9: Comparing POD and I-POD methods in solving a particular example of Lotka-Volterra

Method FOM POD I-POD
Dimension 200 3 3

Time to solution 0.0129 s 0.0746 s 0.0484 s
Relative error: ||ufom − urom||/||ufom|| - 4.56E − 4 1.20E − 3

Figure 5: The interval enclosure of (33) for θ1 = [2.95, 3.05] and θ2 = [0.95, 1.05]

partial differential equations, which means that the number of unknowns is twice as large as the number of
nodes in the discretization. Also in this experiment, we show that we are able to handle uncertainty in two
parameters. The results reported in Table 9 show that we can significantly reduce the size of the search
space since we were able to go from dimension n = 200 to a reduced dimension k = 3, which constitutes a
98.5% contraction. Having uncertainty in two parameters did not yield a large loss of quality, since, given the
reduction of the subspace, just one order of magnitude is lost.

5.4 The FitzHugh-Nagumo Model

The following nonlinear model is based on the classical FitzHugh-Nagumo oscillator. Let

f(v) = v(v − α)(1− v)

and let (veq, weq) be the equilibrium point of the nonlinear system. This system has been modified so that
the equilibrium point coincides with the initial condition, i.e., (v(0), w(0)) = (veq, weq)

dv

dt
= f(v + veq)− f(veq)− w

dw

dt
= ε(v − γw)

(34)

We will illustrate the behavior of the FitzHugh-Nagumo model using the following values for the parameters:
α = 0.139, ε = 0.008, γ = 2.54, v0 = veq = 0.15, w0 = weq = −0.028, the domain t = [0, 10] was discretized
using ∆t = 0.1.
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Table 10: Comparing POD and I-POD methods in solving a particular example of the FitzHugh-Nagumo
model

Method FOM POD I-POD
Dimension 200 3 2

Time to solution 0.022 s 0.079 s 0.188 s
Relative error: ||ufom − urom||/||ufom|| - 6.28E − 05 0.0110

Let us consider the initial condition v0 = [0.1, 0.2] as the input parameter. Observe in Table 10 the
comparative values, and in Figure 6 an enclosure of the solution when v0 = [0.1, 0.2].

Function f in the definition of FHN (34) is highly nonlinear. As a consequence, the nonlinear system of
equations obtained when discretizing the domain is highly sensitive to overestimation when we use interval
computations. In Table 10 we report our experimental results, which show that the performance of IPOD is
affected by the highly nonlinear nature of the function we simulate. We observe that the time to solution of
the ROM, even in a smaller space than POD, is larger. Similarly, the obtained accuracy (relative error to
FOM) of the obtained solution is not nearly as good as that of POD. This is definitely an area of improvement,
but overall, we observe that this problem does not naturally lend itself to POD (or IPOD for that matter)
since even POD’s time to solution is larger that that of FOM.

Figure 6: The interval enclosure of (34) for v0 = [0.1, 0.2]

6 The Bratu Problem

In this section, we study the Bratu’s problem, which is an the elliptic PDE:

∆u+ reu = 0 on Ω : {(x, y) ∈ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (35)

with u = 0 on ∂Ω.

Studying Bratu’s problem in more details is interesting because the existence and uniqueness of (35)
depends on the parameter r. There actually exists a critical value r∗, called the Frank-Kamdndtskii
value, such that for r > r∗, there does not exist any solution to the Bratu’s problem, and two solutions
exist for 0 < r < r∗ [7]. Once r∗ has been determined, the finite difference only gives the lower branch of
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the solution [23]. Experimentally, it has been proven that for (35) the Frank-Kamdndtskii value is around
r∗ ≈ 6.78 [6, 2]. Zero-Dirichlet solutions are used to model combustion reactions.

6.1 Existence and Uniqueness

We consider the discretization of the domain Ω, u(xi, yj) = ui,j with 1 ≤ i, j ≤ 30 (36).

ui,j−1 − 2uij + ui,j+1

(∆y)2
+

ui−1,j − 2uij + ui+1,j

(∆x)2
+ reuij = 0

u0,j = u31,j = ui,0 = ui,31 = 0
(36)

After substituting r = [6.79,∞] in (36) and using ICST to solve it. We can prove that (36) has no solution
for r > 6.79. If r → 0 then uij → 0 for all 1 ≤ i, j ≤ 30, we will focus in the solutions for 1 ≤ r ≤ 6.78.

Now, let us consider the parameter r = 1, and apply ICST. In order to use ICST to solve the problem, we
need to set the parameter as an interval r = [1, 1]. In that case we obtain two solutions for (36) see Figure 7.

Figure 7: Two solutions of (36) for r = [1, 1]

6.2 Comparison POD and I-POD with Bratu’s Problem

In order to perform a comparison between POD and I-POD, we first need to take 100 uniformly distributed
values of parameter r ∈ [1, 6.78] to compute the snapshots. For each r, the solution is column-wise sorted and
stored in the snapshot matrix. Later, we use ICST to solve the same problem but now r = [1, 6.78]. Results
are shown in Table 11.

Table 11: POD and I-POD methods in solving a particular example of the Bratu problem

Method FOM POD I-POD
Time to compute the reduced basis - 2.56 s 7,200 s

Dimension 900 4 4
Time to solution 66.4 ms 11.2 ms 14.4 ms

Relative error: ||ufom − urom||/||ufom|| - 9.94E − 04 0.0045

Figure 8 shows a solution’s enclosure of (35) for r = [1, 6.78].
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Figure 8: The interval enclosure of (35) for r = [1, 6.78]

6.3 ICST and MOR

We have seen how the time to the solution can been improved using MOR, but we also have seen that using
MOR with the traditional methods, such as Newton-like methods, converges to only one solution, regardless
of whether the problem has more than one solution. On the other hand, it has been proven that with ICST,
we can obtain all the solutions of a problem, but it takes longer to identify all these solutions. Under such
circumstances, it is natural to wonder: is it possible to benefit from the advantages of ICST of obtaining all
the solutions of a problem and reducing the time using MOR?

In order to answer the previous question, we solved the problem (36), but, now, finding the solution in
a subspace containing both solutions of the Bratu’s equation. Let us define Φ a basis of such subspace of
dimension 4. Equation (36) becomes in an over-determined nonlinear system of equations F (Φp) = 0. In this
case, the number of unknowns is reduced, but the system still has the same number of equations (constraints).
In Table 12, we have the reduced interval solutions for (35).

Table 12: Reduced interval solution for Bratu’s problem

Branch 1 Branch 2
Lower Bound Upper Bound Lower Bound Upper Bound

P1 -5.23478779E-06 4.57662756E-06 -1.00002058 -0.99998193
P2 -1.00000152 -0.99999855 -1.00001805 -1.00000587
P3 -1.00000110 -0.99999890 -2 -1.99995535
P4 0.99999653 1.00000387 2.99994642 3.00000857

The time to the solution for FOM-ICST was 7200s, and the time for MOR-ICST was 188s, which represents
a very significant improvement.

Before to close this section, let us illustrate the four methods studied here. In Figure 9, the four methods
studied in this article are represented. A simple nonlinear system of equations is illustrated and the Newton’s
method is used to solve it Figure 9(a), observe how the different approximations of the Newton’s method, the
blue dots, converge to a solution of the system. The blue line in Figure 9(b) represents a reduced subspace
where an approximation of the solution is sought. In this case, the different approximations converge to the
intersection of the subspace with the quadratic function. This intersection is the best approximation to the
solution. In both cases, either method converges to only one solution of the system. The method illustrated
in Figure 9(c) shows how ICST work. Observe in this case how this method reduces and splits the initial box,
which is the solid square enclosing the whole figure, until it encloses the two solutions of the system. Finally,
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Figure 9(d) illustrates the Reduced ICST. The two symbols × in the extremes of the subspace represent the
lower and upper bounds of the initial box. In this case the initial box is splitted in two intervals and then
each subinterval is shrunk to enclose both solution approximations of the system.
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Figure 9: Different methods to solve a nonlinear system of equations

7 Conclusions and Future Work

In this article, we proposed and described a novel Model-Order Reduction (MOR) approach that improves
the well-known Proper Orthogonal Decomposition method (POD) by 1/ freeing traditional MOR techniques
from snapshot identification, 2/ providing reliable solutions, and 3/ allowing to handle uncertainty. Our new
approach is based on the use of Interval analysis and Interval Constraint Solving Techniques. We called this
new method the Interval Proper Orthogonal Decomposition (I-POD). We tested I-POD on five nonlinear
partial differential equations problems: Burgers’ equation, the Transport equation, Lotka-Volterra problem,
the FitzHugh-Nagumo Model, and the Bratu’s Problem. We observed and reported promising performance
of I-POD, when compared to POD.

From this preliminary work, we draw the following research activities and directions. First, we will keep
challenging I-POD with problems that are even larger and more non-linear. We will study potential limits
of uncertainty in the original model: how to quantify the amount of uncertainty that still allows to draw
conclusions from simulations? We then plan to draw applications from IPOD: for instance, can we use it for
prediction of future behavior based on observations? If so, how can we translate observations of the full-order
model to values of the reduced-order model? How much more uncertainty does that translation bring?
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