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Abstract

Set intervals techniques are an efficient way of dealing with uncertainty
in spatial localization problems. In these techniques, the desired set (e.g.,
set of possible locations) is represented by an expression that uses intersec-
tion, union, and complement of input sets – which are usually only known
with interval uncertainty. To find the desired set, we can, in principle,
perform the corresponding set-interval computations one-by-one. How-
ever, the estimates obtained by such straightforward computations often
contain extra elements – e.g., fake boundaries. It was known that we
can eliminate these fake boundaries (and other extra elements) if we first
transform the original set expression into an appropriate DNF/CNF form.
In this paper, we prove a new result, that any DNF/CNF form enables us
to eliminate the extra elements – thus, we can use the shortest possible
DNF/CNF form and therefore, speed up the corresponding computations.

1 Formulation of the Problem

Location and mapping problems are important. In many practical situ-
ations, we are interested in location and mapping: we want to find the location
of an object, and we want to find the exact boundaries of a region.

In many cases, we can use the GPS signals to get reasonably accurate lo-
cations of different objects. This possibility is based on the fact that in most
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situations, electromagnetic propagate in the atmosphere with a known (and
practically constant) speed and along straight lines.

For underwater objects, however, determining the exact location is not easy:
radio-signals like the GPS signals do not penetrate in water. In principle, we
can use sound signals to “ping” the object and thus, determine its location.
However, due to inhomogeneity of water and to the presence of many potential
obstacles, the direction and speed of a sound signal may change as the signal
propagates.

Set computation: a useful tool for solving location and mapping prob-
lems. To locate an underwater object, we usually perform several measure-
ments. Based on each measurement, we can find the set S of all the locations x
which are consistent with the measurement results. In this case, if we perform
n measurements, and find the corresponding sets S1, . . . , Sn, then we can con-
clude that the actual location x belongs to all these sets. In this case, the set
S of all possible locations x is the intersection of the n sets corresponding to n
measurement results: S = S1 ∩ . . . ∩ Sn.

We also know that the underwater object is in the water, so it cannot be
inside the 3-D areas that were already identified as underwater rocks or peers.
If we denote the corresponding “impossible-to-be” sets by I1, . . . , Im, then we
can get a better description of the set of possible locations S as the difference

S = (S1 ∩ . . . ∩ Sn)− (I1 ∪ . . . ∪ Im),

where A−B denotes the set difference.
This is an idealized situation, when we are sure that all the sensor recordings

describe a signal reflected by the object. In practice, we may have outliers –
recordings which are caused by some external noise or by a reflection from a
nearby object. For such outlier reflections, the corresponding set Si describes
the location of a different object; as a result, the intersection of this set with
the others sets Sj (that describe reflections from the object of interest) may be
empty.

One of the techniques that helps to locate an object in such situations is
based on knowing the maximum possible number of outliers q. In this case,
instead of taking the intersection of all n sets Si – i.e., instead of considering
the set of all the elements that belong to all n sets, we consider the set of all
the elements that belong to at least n − q different sets Si. Such a “q-relaxed
intersection” can also be described in terms of union and intersection: namely,
it can be described as

S =
⋃
A

⋂
i∈A

Si,

where we consider all possible subsets A ⊆ {1, . . . , n} with at least n−q elements.
This idea implicitly assumes that all the sensors are equally reliable. In

practice, different sensors may have different reliability. This reliability can
be gauged by the probability pi that the signal coming out of the i-th sensor
actually reflects the location of the desired object. Then, the probability that
the signal from the i-th sensor is an outlier is equal to 1− pi.
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Different sensors are usually independent. So, if a location x appears as
possible based on the data provided by two sensors i and j, then the probability
that this location is not real – i.e., the probability that both sensors malfunc-
tioned – is equal to the product (1− pi) · (1− pj). In general, for each location
x, if A ⊆ {1, . . . , n} is the set of all the sensors i for which x the possible loca-
tion (i.e., for which x ∈ Si), then the probably that this is a wrong location –
i.e., that all the sensors from this set malfunctioned – is equal to the product∏
i∈A

(1 − pi). It is reasonable to conclude that the location x is possible if the

probability of a mistake is sufficiently small: smaller than some threshold p0:∏
i∈A

(1− pi) ≤ p0.

For computational purposes, it is convenient to replace the product with the
sum by taking minus logarithm of both sides; then, this condition takes the
form ∑

i∈A
wi ≥ w0,

where we denoted wi
def
= − ln(1 − pi) and w0

def
= − ln(p0). The resulting set of

possible locations then takes the following form:

S =
⋃

A:
∑
i∈A

wi≥w0

(⋂
i∈A

Si

)
.

When all the sensors are equally reliable, i.e., when all the probabilities p1 =
. . . = pn are equal, and thus,

w1 = . . . = wn,

the condition
∑
i∈A

wi ≥ w0 simply means that the set A contains at least
w0

w1

elements. So, for

q = n− w0

w1
,

this means that we consider all the subsets with at least n− q elements.
The above description includes the cases when the location appears as pos-

sible based on the signals from all the sensors. In some cases, however, when
we know that a certain percentage of sensors is bound to malfunction, we may
want to dismiss locations that appear on too many sensors – that would prob-
ably mean that the signal is too strong and is, thus, not a reflection from the
object of interest. This leads to more complex schemes.

We can consider more sophisticated combination schemes. In all these cases,
the desired set A is described as an expression that combines the input sets
A1, . . . , An, . . . by using the three basic set operations: union, intersection, and
complement. Thus, for localization problems, it is important to be able, given
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sets A1, . . ., to compute the set A described by such an expression. Such com-
putation is known as set computation.

Need for set intervals. In many practical situations, we know the inputs sets
only approximately. For example, in practice, we only have an approximate
information about the 3-D location I1 of an underwater rock – one of the loca-
tions where an underwater object cannot be. In the ideal case, when we know
the exact 3-D map of this rock, for each spatial location x, we know whether x
belongs to this set or not. In practice:

• for some locations x, we know that x ∈ I1;

• for some other locations x, we know that x 6∈ I1; however,

• for some locations x, we do not know whether x ∈ I1 or x 6∈ I1.

Such a situation can be naturally described by listing two sets:

• the set I1 of all the locations x that we know are inside I1, and

• the set I1 of all the locations that can be inside I1, i.e., locations x for
which we either know that x ∈ I1, or we do not know whether x ∈ I1 or
not.

In this case, the only information that we have about the actual (unknown) set
I1 is that this set is in between I1 and I1:

I1 ⊆ I1 ⊆ I1.

Interval and set-interval computations are indeed very useful in location and
mapping problems, especially for underwater objects; see, e.g., [1, 2, 3, 4, 5, 6,
7, 8].

Resulting computational problem. The need to consider set intervals in
set computations leads to the following computational problem.

We have a set-theoretic expression A = f(A1, . . . , AN ) that expressed the
desired set A as a result of a sequence of basic set-theoretic operations (union,
intersection, and complement) applied to the original sets A1, . . . , AN .

In general, we do not know the sets Ai. Instead, for each i, we know the
lower set Ai and the upper set Ai for which Ai ⊆ Ai. The only information that
we have about the unknown set Ai is that Ai ⊆ Ai ⊆ Ai ⊆ Ai. In other words,
for each i, we know the corresponding set interval

Ai =
[
Ai, Ai

] def
= {Ai : Ai ⊆ Ai}.

For different sets Ai ∈ Ai, in general, we get different sets A = f(A1, . . . , AN ).
Our objective is to find the class of all such sets A:

A = {f(A1, . . . , AN ) : A1 ∈ A1, . . . , AN ∈ AN}.
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How this problem is solved now. It is known (see, e.g., [10]) how to compute
the range for the case when the set operation f(A1, . . .) is simply one of the three
basic set operations. In this case, we have explicit formulas for the corresponding
range A:

• for the union f(A1, A2) = A1 ∪A2, we have

A =
[
A1 ∪A2, A1 ∪A2

]
;

• for the intersection f(A1, A2) = A1 ∩A2, we have

A =
[
A1 ∩A2, A1 ∩A2

]
;

• for the complement f(A1, A2) = A1 −A2, we have

A =
[
A1 −A2, A1 −A2

]
.

In general, we can:

• parse the expression f(A1, . . . , An), i.e., represent the formula
f(A1, . . . , An) as a sequence of elementary set-theoretic operations, and
then

• perform computations step-by-step, replacing each elementary set opera-
tion with the corresponding operation with set intervals.

One can prove, by induction, that as a result, we always get an enclosure
A′ ⊇ A for the desired range; see, e.g., [9].

Problem: fake boundaries. It is known that while the above procedure
always leads to an enclosure for the desired class A, the resulting class A′ is
often larger than the desired class A, i.e., contains many unneeded sets.

This can be easily illustrated on the following toy example. Let U be the
universal set, and let us assume that we know nothing about the set A1 ⊆ U . In
this case, the range A1 of possible sets A1 is simply the class of all the subsets
of the universal set: A1 = [∅, U ].

Suppose now that we want to compute the range of the function f(A1) =
A1 ∪ (U − A1). Of course, for every set A1, the resulting set f(A1) is simply
equal to the universal set, so the actual range is A = {U} = [U,U ]. Let us see,
however, what we get if we apply the above procedure. According to the above
procedure, we first represent the expression f(A1) as a sequence of elementary
set-theoretical operations:

• first, we compute A2
def
= U −A1;

• then, we compute the union A = A1 ∪A2.

According to the above procedure, we perform these two operations with set
intervals:
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Figure 1: Actual range X

• first, we compute

A2 = U −A1 = [U,U ]−
[
A1, A1

]
= [U,U ]− [∅, U ] =

[U − U,U − ∅] = [∅, U ] ;

• then, we compute

A′ = A1 ∪A2 = [∅, U ] ∪ [∅, U ] = [∅ ∪ ∅, U ∪ U ] = [∅, U ] .

Thus, instead of the single set U , we get the class of all possible subsets of U .
We can give more realistic examples where the resulting class has unneces-

sary sets. For example, let us assume that we have three sets A, B, and C, and
we are computing the expression

X = (A ∪B ∪ C) ∩ (A ∪B ∪ (U − C)).

One can easily check that this expression is equivalent to X = A ∪ B, so the
actual range is equal to

X =
[
X,X

]
=
[
A ∪B,A ∪B

]
.

On the example, when all three sets are disks with uncertain boundary, the
desired class X is shown in Fig. 1.

What will happen, however, if we apply the above algorithm to the original
expression? To compute this expression:
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• first, we compute the union A1
def
= A ∪B ∪ C;

• then, we compute the difference A2
def
= U − C;

• after that, we compute the union A3
def
= A ∪B ∪A2; and

• finally, we compute the intersection A = A1 ∩A3.

In this case, the above algorithm leads to the following result:

• first, we compute the range of A1 = A ∪B ∪ C as

A1 =
[
A ∪B ∪ C,A ∪B ∪ C

]
;

• then, we compute the range of A2 = U − C, as

A2 = [U,U ]−
[
C,C

]
=
[
U − C,U − C

]
;

• after that, we use the ranges for A, B, and A2, to estimate the range of
A3 = A ∪B ∪A2, as

A3 =
[
A ∪B ∪ (U − C), A ∪B ∪ (U − C)

]
;

• finally, we estimate the range of the intersection A as A′ =
[
A′, A′

]
, where

A′ = (A∪B∪C)∩(A∪B∪(U−C)) andA′ = (A∪B∪C)∩A∪B∪(U−C)).

We can see that the upper bound A′, in addition to the desired values A ∪ B,
also contains all the values from the “boundary” C − C of the set interval C;
see Fig. 2.

These fake boundaries is what we need to eliminate.

It is, in principle, possible to eliminate fake boundaries. In [9], we have
proven:

• that the range A always has the form of a set interval A =
[
A,A

]
for

appropriate sets A and A, and

• that it is, in principle, possible to compute both sets A and A.

Specifically:

• we get exactly the upper set A if we apply the above step-by-step algorithm
to the equivalent canonical DNF form of the expression f(A1, . . . , AN ),
and

• we get exactly the lower set A if we apply the above step-by-step algorithm
to the canonical CNF form of the expression f(A1, . . . , AN ).
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Figure 2: An estimate X′ with a fake boundary

The notions of the canonical DNF and CNF forms come from propositional
logic – which makes perfect sense since there is a 1-1 correspondence between
set operations and propositional formulas:

• the condition x ∈ A1 ∪A2 means that

(x ∈ A1) ∨ (x ∈ A2);

• the condition x ∈ A1 ∪A2 means that

(x ∈ A1) & (x ∈ A2); and

• the condition that x ∈ A1 −A2 means that

(x ∈ A1) &¬(x ∈ A2).

By replacing union with “or”, intersection with “and”, etc., we can thus as-
sign, to each set operation f(A1, . . . , AN ), a propositional formula F (a1, . . . , aN )
for which a point x belongs to the set f(A1, . . . , AN ) if and only the formula
F (a1, . . . , aN ) is true for the variables ai describing whether x belongs to Ai or
not:

x ∈ f(A1, . . . , AN )⇔ F (x ∈ A1, . . . , x ∈ AN ).

For each propositional formula, we can build a canonical DNF form by enumer-
ating all the combinations of truth variables (a1, . . . , aN ) for which this formula
is true.
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For example, the above set operation

(A ∪B ∪ C) ∩ (A ∪B ∪ (U − C))

corresponds to the propositional formula

(a ∨ b ∨ c) & (a ∨ b ∨ ¬c).

By enumerating all possible tuples (a, b, c) for which this propositional formula
is true, we can form the canonical DNF form. Specifically:

• this propositional formula is true when a = b = c =“true”; this leads to
the term a& b& c;

• this formula is also true when a = b =“true” and c =“false”; this leads to
a& b&¬c;

• it is true when a =“true”, b =“false”, and c =“true”; this leads to
a&¬b& c;

• it is true when a =“true” and b = c =“false”; this leads to a&¬b&¬c;

• it is true when a =“false” and b = c =“true”; this leads to ¬a& b& c;

• finally, it is true when a =“false”, b =“true”, and c =“false”; this leads to
¬a& b&¬c.

The formula is true if one of these cases is true. So, our formula F (a, b, c) has
the following canonical DNF form:

(a& b& c)∨(a& b&¬c)∨(a&¬b& c)∨(a&¬b&¬c)∨(a& b& c)∨(¬a& b&¬c).

This propositional formula corresponds to the following set function:

(A ∩B ∩ C) ∪ (A ∩B ∩ (U − C)) ∪ (A ∩ (U −B) ∩ C)∪

(A ∩ (U −B) ∩ (U − C)) ∪ ((U −A) ∩B ∩ C) ∪ ((U −A) ∩B ∩ (U − C)).

One can easily check that if we compute X by applying the above step-by-step
procedure to this formula, we get exactly the desired upper bound X = A ∪B.

To compute the canonical CNF form, we, vice versa, list all the tuples
(a1, . . . , aN ) for which the original propositional formula is false. Then, we
say that the propositional formula is true if the tuple is different from each of
these false-producing tuples.

Let us show how this procedure works on the example of the set function
(A∪B∪C)∩(A∪B∪(U−C)) and propositional formula (a∨b∨c) & (a∨b∨¬c).

• This formula is false when a = b =“false” and c =“true”. To avoid this
tuple, we need to make sure that either a is true, or n is true, or c is false.
The corresponding term is a ∨ b ∨ ¬c.
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• This formula is also false when a = b = c =“false”. To avoid this tuple,
we need to make sure that either a is true, or n is true, or c is true. The
corresponding term is a ∨ b ∨ c.

The formula is true for some tuple if this tuple is different from both false-
inducing tuples, i.e., if

(a ∨ b ∨ ¬c) & (a ∨ b ∨ c);

this is the canonical CNF form of the original formula. This propositional
formula corresponds to the following set operation:

(A ∪B ∪ (U − C)) ∩ (A ∪B ∪ C).

One can easily check that if we compute the lower set X by applying the above
step-by-step algorithm to this set operation, we will get the exact lower set

X = A ∪B.

Problem: using canonical DNF and CNF forms requires too much
computation time. The main problem with the above idea is that often, it
requires too many operations. For example, in the above example, the canonical
DNF form requires computing 6 intersections of 3 set intervals each – and then
computing the union of the resulting set intervals.

In general, when we have N sets, we can have 2N different true-false tuples
(a1, . . . , aN ), For each of these tuples, the corresponding propositional formula is
either true or false. If for a tuple, the given formula is true, then this tuple leads
to a term in the canonical DNF form. If for this tuple, the given formula is false,
we get a term in the canonical CNF form. To perform the above computations,
we need to use both the DNF form (to compute A) and the CNF form (to
compute A). Thus, overall, we need to compute the set interval values of 2N

terms.
In some practical situations, when we have many sensors, the number N

can be huge; in this case, 2N can be astronomically, unrealistically huge. So, a
natural question is: how can we perform set interval computations faster and
still eliminate all fake boundaries?

What we do in this paper. In this paper, we show how computations-
without-fake-boundaries can be performed much faster. This is the new result
of this paper.

2 How to Avoid Fake Boundaries Faster: Main
Idea

Main idea. Our main idea is to use general DNF and CNF forms instead of
the canonical ones. This possibility is based on the new result – the main result
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of this paper – that the use of these general forms enables us to avoid fake
boundaries.

For a propositional formula, a DNF form is a disjunction (“or”-combination)
of conjunctions, i.e., “and”-combinations of propositional variables and their
negations. In set-theoretic terms, a DNF form is thus a union of intersections
of sets and their complements.

For example, for the above formula, a ∨ b is a DNF form, in which each of
the conjunctions a and b consists of only one term. In this case, A ∪ B is the
corresponding set expression.

Alternatively, we could use the following DNF expression:

(a& b) ∨ (a&¬b) ∨ (¬a& b),

which corresponds to the set operation

(A ∩B) ∪ (A ∩ −B) ∪ (−A ∩B),

where we denoted −A def
= U −A.

Similarly, for a propositional formula, a CNF form is a conjunction (“and”-
combination) of disjunctions, i.e., “or”-combinations of propositional variables
and their negations. In set-theoretic terms, a DNF form is thus an intersection
of unions of sets and their complements.

For example, for the above formula, a ∨ b is a CNF form, with only one
disjunction a ∨ b. In this case, A ∪B is the corresponding set expression.

Let us show that by using the general DNF and CNF forms, we can indeed
get the same exact bounds A and A as by using the canonical DNF and CNF
forms.

Proposition 1. Let f(A1, . . . , AN ) be a set operation in the DNF form, and let
A1, . . . ,AN be set intervals. Then, if we apply the above step-by-step algorithm
to this data

(f(A1, . . . , An),A1, . . . ,AN ),

the resulting upper set A′ will be equal to the upper set A of the corresponding
range

A =
[
A,A

]
= f(A1, . . . ,AN ).

Proof.

1◦. Due to the above-mentioned result from [9], the range A has the form of a
set interval A =

[
A,A

]
. Thus, the upper set A is equal to the union of all the

possible sets from this range – i.e., to the union of all the sets A = f(A1, . . . , AN )
corresponding to different combinations of sets Ai ∈ Ai.

So, to prove that the set A′ is equal to the desired set A, it is sufficient to
prove that the set A′ is equal to the union of all such sets A = f(A1, . . . , AN ).

2◦. Let us first prove that the union A of all the sets A = f(A1, . . . , AN ) is
indeed contained in the resulting set A′.
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To prove this, we will prove that for each tuple (A1, . . . , AN ) with Ai ∈ Ai

for all i, the set A = f(A1, . . . , AN ) is a subset of A′. Indeed, the set operation
f(A1, . . . , AN ) has a DNF form

f(A1, . . . , AN ) = (Ai ∩ −Aj ∩ . . . ∩Ak) ∪ (. . .) ∪ . . .

When we apply the above step-by-step algorithm to this form, when computing
A′, we replace Ai with

Ai ⊇ Ai

and −Aj with
−Aj ⊇ −Aj .

For each term, this replacement makes it larger (or the same), so each conjunc-
tion is contained in the result of the corresponding replacement:

(Ai ∩ −Aj ∩ . . . ∩Ak) ⊆
(
Ai ∩ −Aj ∩ . . . ∩Ak

)
.

Since this inclusion holds for each conjunction, it holds for their union as well:

(Ai ∩ −Aj ∩ . . . ∩Ak) ∪ (. . .) ∪ . . . ⊆
(
Ai ∩ −Aj ∩ . . . ∩Ak

)
∪ (. . .) ∪ . . . ,

i.e., indeed, A ⊆ A′.

3◦. To complete the proof, we need to show that the set A′ produced by the
algorithm is contained in the union A of all the sets A = f(A1, . . . , AN ) corre-
sponding to Ai ∈ Ai.

To prove this, we will show that every element x ∈ A′ belongs to a set
A = f(A1, . . . , AN ) for appropriately chosen sets Ai ∈ Ai. Indeed, let x ∈ A′.
Since the set A′ is defined as a union of several conjunctions (intersections),
the fact that the element x belongs to this union means that it belongs to one
of these intersections, e.g., to a set of the type Ai ∩ −Aj ∩ . . . ∩ Ak. This

means that for the appropriate choice of the sets A1, . . ., namely, for Ai = Ai,
Aj = Aj , . . . , the element x belongs to the corresponding intersection from the
DNF expression f(A1, . . . , AN ).

Since x belongs to this intersection, and the set f(A1, . . . , AN ) is a union of
several such intersections, we thus conclude that the element x belongs to the
set A = f(A1, . . . , AN ) – and hence, that x belongs to the union A of all such
sets.

The proposition is proven.

Proposition 2. Let f(A1, . . . , AN ) be a set operation in the CNF form, and let
A1, . . . ,AN be set intervals. Then, if we apply the above step-by-step algorithm
to this data

(f(A1, . . . , An),A1, . . . ,AN ),

the resulting lower set A′ will be equal to the lower set A of the corresponding
range

A =
[
A,A

]
= f(A1, . . . ,AN ).
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Proof.

1◦. Due to the above-mentioned result from [9], the range A has the form of
a set interval A =

[
A,A

]
. Thus, the lower set A is equal to the intersection

of all the possible sets from this range – i.e., to the intersection of all the sets
A = f(A1, . . . , AN ) corresponding to different combinations of sets Ai ∈ Ai.

So, to prove that the set A′ is equal to the desired set A, it is suffi-
cient to prove that the set A′ is equal to the intersection of all such sets
A = f(A1, . . . , AN ).

2◦. Let us first prove that the intersection A of all the sets A = f(A1, . . . , AN )
indeed contains the resulting set A′.

To prove this, we will prove that for each tuple (A1, . . . , AN ) with Ai ∈ Ai

for all i, the set A = f(A1, . . . , AN ) is a superset of A′. Indeed, the set operation
has a CNF form

f(A1, . . . , AN ) = (Ai ∪ −Aj ∪ . . . ∪Ak) ∩ (. . .) ∩ . . .

When we apply the above step-by-step algorithm to this form, when computing
A′, we replace Ai with

Ai ⊆ Ai

and −Aj with
−Aj ⊆ −Aj .

For each term, this replacement makes it smaller (or the same), so each disjunc-
tion contains the result of the corresponding replacement:

(Ai ∪ −Aj ∩ . . . ∪Ak) ⊇
(
Ai ∪ −Aj ∪ . . . ∪Ak

)
.

Since this inclusion holds for each disjunction, it holds for their intersection as
well:

(Ai ∪ −Aj ∪ . . . ∪Ak) ∩ (. . .) ∩ . . . ⊇
(
Ai ∪ −Aj ∪ . . . ∩Ak

)
∩ (. . .) ∩ . . . ,

i.e., indeed, A ⊇ A′.

3◦. To complete the proof, we need to show that the set A′ produced by the
algorithm contains the intersection A of all the sets A = f(A1, . . . , AN ) corre-
sponding to Ai ∈ Ai.

We will prove this by contradiction. Let us assume that for some x ∈ A, we
have x 6∈ A′. Since the set A′ is defined as an intersection of several disjunctions
(unions), the fact that the element x does not belongs to this intersection means
that it does not belong to one of these intersecting unions, e.g., to a set of the
type Ai ∪ −Aj ∪ . . . ∪ Ak. This means that for the appropriate choice of the
sets A1, . . ., namely, for Ai = Ai, Aj = Aj , . . . , the element x does not belong
to the corresponding union from the CNF expression f(A1, . . . , AN ).

Since x does not belong to this union, and the set f(A1, . . . , AN ) is an
intersection of several such unions, we thus conclude that the element x does
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not belongs to the set A = f(A1, . . . , AN ) – and hence, that x does not belongs
to the intersection A of all such sets A. This contradicts to our assumption that
x belongs to this intersection. Thus, indeed, every element x ∈ A belongs to
A′, i.e., A ⊆ A′.

The two inclusions, from Parts 2 and 3 of this proof, imply that A ⊆ A′ and
A′ ⊆ A. thus, A = A′. The proposition is proven.

Conclusion. Thus, to perform set interval computations and avoid fake bound-
aries, it is not necessary to transform the original expression into canonical DNF
and CNF forms – any DNF and CNF forms will do.

The above example shows that CNF and DNF forms can indeed be much
shorter than the canonical ones, so we can indeed speed up computations –
without introducing fake boundaries.

3 How Do We Get Shorter DNF and CNF
Forms

Main idea. How can we get shorter DNF and CNF forms? To get the canonical
DNF forms, we start with all the tuples for which the corresponding proposi-
tional formula is true. For each tuple, we can then write down the corresponding
conjunction.

If we have two conjunctions that differ only by one variable, i.e., which have
the form F & v and F &¬v, then, we can easily see, we can replace the part
(F & v) ∨ (F &¬v) of the original DNF formula with the equivalent simpler
term F .

Similarly, to get a CNF form, we start with all the tuples for which the
corresponding propositional formula is false. For each tuple, we can then write
down the corresponding disjunction.

If we have two disjunctions that differ only by one variable, i.e., which have
the form G ∨ v and G ∨ ¬v, then, we can easily see, we can replace the part
(G∨v) & (G∨¬v) of the original CNF formula with the equivalent simpler term
G.

By applying this procedure again and again, we can get shorter and shorter
expressions.

DNF example. Let us show how this idea can work on the above example.
We start with the canonical DNF form

(a& b& c)∨(a& b&¬c)∨(a&¬b& c)∨(a&¬b&¬c)∨(a& b& c)∨(¬a& b&¬c)

that describes all the tuples for which the original formula (a∨b∨c) & (a∨b∨¬c)
is true.

By looking at the above formula, we immediately see the pairs of conjunc-
tions that differ by only one variable and be thus combined together:

• the conjunctions a& b& c and a& b&¬c can be combined into a single
conjunction a& b;
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• the conjunctions a&¬b& c and a&¬b&¬c can be combined into a single
conjunction a&¬b, and

• the conjunctions ¬a& b& c and ¬a& b&¬c can be combined into a single
conjunction ¬a& b.

After these replacements, the original DNF formula is simplified into the fol-
lowing form:

(a& b) ∨ (a&¬b) ∨ (¬a& b).

This form can be further simplified:

• by combining a& b and a&¬b, we get a, and

• by combining a& b and ¬a& b, we get b.

Thus, we get the simplified DNF form a ∨ b.
We could reach this form differently. We could:

• combine the conjunctions a& b& c and a&¬b& c into a single conjunction
a& c;

• combine the conjunctions a& b& c and a&¬b& c into a single conjunction
b& c; combine the conjunctions a& b&¬c and a&¬b&¬c into a single
conjunction a&¬c;

• combine the conjunctions a& b&¬c and ¬a& b& c into a single conjunc-
tion b&¬c.

Then, we would get the new DNF form

(a& c) ∨ (b& c) ∨ (a&¬c) ∨ (b&¬c).

Then, new combinations are possible; we could:

• combine a& c and a&¬c into a single conjunction a, and

• combine b& c and b&¬c into a single conjunction b.

Thus, we will get the same short DNF form a ∨ b.

CNF example. In the CNF case, we start with the canonical CNf form

(a ∨ b ∨ c) & (a ∨ b ∨ ¬c)

that describes all the tuples (a, b, c) for which the original propositional formula
is false.

For this formula, there is only one possible combination: we can combine
the disjunctions a ∨ b ∨ c and a ∨ b ∨ ¬c into a single disjunction a ∨ b.

Karnaugh maps: a graphical representation of this idea. The above
idea can be graphically represented by a Karnaugh map, where:
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AB AB AB AB

C

C

1 1 10

1 1 10

Figure 3: Karnaugh map of the original formula

AB AB AB AB

C

C

1 1 10

1 1 10

(a)

AB AB AB AB

C

C

1 1 10

1 1 10

(b)

Figure 4: Karnaugh map illustrating simplification of DNF (a) and CNF (b)
forms

• cells corresponds to tuples,

• 1 (= “true”) 0 (= “false”) in a cell indicates whether the original formula
is true or false for the corresponding tuple, and

• tuples differing by only variable are neighbor.

The Karnaugh-map representation of the original propositional formula is given
on Fig. 3, and the above DNF and CNF reductions are illustrated on parts (a)
and (b) of Fig. 4.
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