
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

9-2016

Computability of the Avoidance Set and of the Set-
Valued Identification Problem
Anthony Welte
École Nationale Supérieure de Techniques Avancées Bretagne, tony.welte@gmail.com

Luc Jaulin
École Nationale Supérieure de Techniques Avancées Bretagne, lucjaulin@gmail.com

Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Sciences Commons
Comments:
Technical Report: UTEP-CS-16-64
To appear in Journal of Uncertain Systems

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Welte, Anthony; Jaulin, Luc; Ceberio, Martine; and Kreinovich, Vladik, "Computability of the Avoidance Set and of the Set-Valued
Identification Problem" (2016). Departmental Technical Reports (CS). Paper 1069.
http://digitalcommons.utep.edu/cs_techrep/1069

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1069&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1069&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1069&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1069&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1069&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/1069?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F1069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Computability of the Avoidance Set and of the

Set-Valued Identification Problem

Anthony Welte1, Luc Jaulin1,
Martine Ceberio2, and Vladik Kreinovich2

1Lab STICC

École Nationale Supérieure
de Techniques Avancées Bretagne

(ENSTA Bretagne)
2 rue François Verny
29806 Brest, France

tony.welte@gmail.com, lucjaulin@gmail.com
2Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, Texas 79968, USA

mceberio@utep.edu, vladik@utep.edu

Abstract

In some practical situations, we need to find the avoidance set, i.e., the
set of all initial states for which the system never goes into the forbidden
region. Algorithms are known for computing the avoidance set in several
practically important cases. In this paper, we consider a general case, and
we show that, in some reasonable sense, the corresponding general prob-
lem is always algorithmically solvable. A similar algorithm is possible for
another general system-related problem: the problem of describing the set
of all possible states which are consistent with the available measurement
results.

1 Formulation of the Problem

In control, we usually deal with robots (or other controlled devices) whose states
s are described by tuples of real numbers s = (s1 . . . , sd). The dynamics of such
devices is usually described by a system of differential equations

dsi
dt

= fi(s(t)),

1

for a known computable functions fi(s). In most practical situations, we can
use these equations to compute, for each initial state s0 at the starting moment
t0, and for each moment of time t < t0, the state s(s0, t) of the system at the
moment t; see, e.g., [2, 5, 10, 12].

Often in control, we have a set S of states that a robot (or other controlled
device) needs to avoid. Because of this necessity:

• once we know how the states change in time, i.e., once we know the al-
gorithm s(t, s0) that describes how the state s at moment t depends on t
and on the initial state s0,

• we need to find the set S0 of all the initial states for which the trajec-
tory avoids the forbidden set S for all moments of time from the starting
moment t0 to a given future moment T .

In other words, we want to find the avoidance set

S0 = {s0 : s(t, s0) ̸∈ S for all t ∈ [t0, T]}.

There exist algorithms for solving this problem in some specific situations; see,
e.g., [3, 7, 9].

In this paper, we analyze the general problem of computing the avoidance
set, and we show that this problem is, in some reasonable sense, algorithmically
computable.

2 What Is Computable: A Brief Reminder

Need for this reminder. To formulate our problem, let us recall what is means
for a function to be computable and – since we are interested in avoiding a given
set – what it means for a set to be computable. Both these computability notions
are based on the notion of a computable number, which will be introduced first.

What is computable: general idea. When we say that some object is
computable, this means that we have an algorithm that is able to compute this
object with any given accuracy.

Computable real numbers. Informally, a real number x is computable if,
for any given accuracy, we can efficiently compute a binary-rational (or, more
generally, a rational) number that approximates x with the given accuracy.

Thus, we arrive at the following definition (see, e.g., see, e.g., [1, 6, 11]):

Definition 1. By a computable real number, we mean a pair consisting of
a real number x and an algorithm that, given an integer n, returns a rational
number rn for which |rn − x| ≤ 2−n.

A computable tuple can be naturally defined as a tuple of computable num-
bers.

2

Definition 2. By a computable tuple, we mean a tuple x = (x1, . . . , xn) con-
sisting of computable real numbers x1, . . . , xn.

On the set of all the tuples, we can naturally define the Euclidean distance

d(x, y) =

√
n∑

i=1

(xi − yi)2. It is easy to see that for every two computable real

numbers, we can algorithmically compute the distance d(x, y).

In this paper, we will use the notation Dr(x)
def
= {y : d(x, y) ≤ r}.

Computable functions. Informally, a function from tuples to real numbers
is computable if we can compute f(x) for each computable tuple x. For each
computable tuple, we only know its approximation. Thus, we need to know, for
each desired accuracy in f(x), with what accuracy we need to compute x to get
f(x) with the desired accuracy.

In the following text, we will take into account that in real life, all the pa-
rameters describing a state are bounded. Thus, all the corresponding functions
are defined on a appropriate computable box B = [x1, x1] × . . . × [xn, xn], i.e.,
on a box with computable endpoints xi and xi.

Definition 3. By a computable function, we mean a triple consisting of a real-
valued function f : B → IR defined on a computable box B and the following
two algorithms:

• an algorithm that, given a rational-valued tuple x ∈ B, natural number n,
computes the value f(x); and

• an algorithm that, given a natural number n, returns a natural number m
for which d(x, x′) ∈ 2−m implies |f(x)− f(x′)| ≤ 2−n.

It is known that most usual functions are computable, e.g., arithmetic op-
erations, minimum and maximum, etc. It is also known that a superposition of
computable functions is computable. So, e.g., the sum or the minimum of two
computable functions is also computable.

It is also known that for there exists an algorithm that, given a computable
function f(x) on an interval with computable endpoints, computes the supre-
mum sup

x∈S
f(x) and the infimum inf

x∈S
f(x) of f(x) on S – and if the original

function also computably depended on some parameter, the resulting inf and
sup function are also computable in terms of this parameter.

Computable sets of real-values tuples. Since we only know the tuples with
some accuracy, we can therefore only know the sets with some accuracy. It is
reasonable to say that a set A is an ε-approximation to a set B if:

• every element a ∈ A is ε-close to some element from b ∈ B, and

• every element b ∈ B is ε-close to some element from a ∈ A.

3

Comment. For every two sets A and B, the infimum of all real numbers ε > 0
with this property is known as the Hausdorff distance dH(A,B). In terms of
the Hausdorff distance, the above property takes the form dH(A,B) ≤ ε.

In the computer, we can only list finitely many tuples, thus, we can only
have finite sets. So, we arrive at the following definition.

Definition 4. By a computable set, we mean a pair consisting of a set S and
an algorithm that, given a natural number n, produce a finite list of elements
Ln for which:

• for every element s ∈ S, there exists x ∈ Ln for which d(s, x) ≤ 2−n; and

• for every element x ∈ Ln, there exists s ∈ S for which d(x, s) ≤ 2−n.

Comments. Since we can only measure locations etc. with some accuracy, if
s is a limit point of the set S, i.e., if s = lim sn for sn ∈ S, then, no matter
how accurately we measure s, we will never be able to distinguish it from the
appropriate element sn. Thus, we can never be able to tell that the point s
does not belong to the set S. Because of this, it makes sense to assume that
the computable set contains all its limit points, i.e., that it is topologically
closed. For example, if the computable set S contains all rational valued from
the interval [0, 1], then it should contain the whole interval as well.

For a metric space, an ε-close finite set is known as an ε-net. It is known
that a closed set has a finite ε-net for every ε if and only if this set is compact.
Because of this, computable sets are also known as computable compact sets.

One can check, e.g., that every box [x1, x1] × . . . [xn, xn] with computable
bounds xi and xi is a computable set, and that every ballDr(x) with computable
r and x is also computable. It is known that for every computable set S, the

distance d(x, S)
def
= inf

s∈S
d(x, s) from a point x to this set is a computable function

of x.

Computable set means an outer approximation. When a set S is com-
putable, this means that for every n, the set S is contained in the union of finitely
many balls D2−n(x) of radius 2−n with centers in different points x ∈ Ln:

S ⊆
∪

x∈Ln

D2−n(x).

One can easily see that this union is 2−n-close to the original set S. When
n → ∞, this union gets closer and closer to the original set S. Thus, when we
say that a set is computable, we mean that we have more and more accurate
outer approximations to this set.

One needs to be careful when dealing with computable functions on
computable sets. When dealing with computable functions on computable
set, one needs to be careful, since seemingly natural things turned out to be
not computable. For example, it may seem reasonable to assume that for every

4

computable function f on a computable set S, the set Sf
def
= {s : f(s) ≥ 0} is

computable, but this is not true: no algorithm is possible that, given a com-
putable function f on a computable set S, provides the lists Ln corresponding
to the set Sf .

This negative result follows from the know result that it is not possible,
given a Turing machine, to check whether it halts or not. Based on each Turing
machine, we can design a computable number a by taking:

• rn = 2−n if the corresponding Turing machine did not stop by moment n
and

• rn = 2−t if it stopped at moment t ≤ n.

For this computable real number a, we have a = 0 if and only if the original
Turing machine never stops. We can then define a function f(x) = −a · x on
the interval S = [0, 1]:

• for a = 0, the set Sf is the while interval, while

• for a > 0, the set Sf consists of only one point 0.

Thus, if we could approximate the set Sf with accuracy 0.5, we would be able
to tell whether a = 0 and a > 0, and we have already shown that this is not
possible.

A similar negative result shows that the closure of a complement to a com-
putable set is not necessarily computable. To be more precise, there is no
algorithm that, given such a closure, would return the corresponding lists Ln.
Indeed, let us define the computable set corresponding to a given Turing ma-
chine as follows. For each n, let us take:

• Ln = {−1, 0, 2−n, 2 · 2−n, . . . , 1 − 2−n, 1} if the Turing machine did not
stop by moment n and

• Ln = {−1, 0, 2−t, 2 · 2−t, . . . , 1− 2−t, 1} if it stopped at moment t ≤ n.

Then:

• if the Turing machine does not stop, the resulting set S is {−1} ∪ [0, 1],
and the closure of its complement [−1, 1]− S is the interval [−1, 0];

• on the other hand, if it stops at some moment t, then

S = {−1, 0, 2−t, 2 · 2−t, . . . , 1− 2−t, 1},

and the closure of the complement [−1, 1]−S is the whole interval [−1, 1].

If we could approximate this closure with accuracy 0.5, we would be able to tell
whether the Turing machine halts or not, and we know that this is not possible.

5

3 Analysis of the Problem

Analysis of the problem. For every moment t, the requirement that the
state s(t, s0) does not belong to the set S can be equivalently formulated as
d(s(t, s0), S) > 0.

A state is usually described by listing the values of finitely many parameters
characterizing this state: s = (s1, . . . , sn). We have also mentioned that, since
all the parameters are usually bounded, the set of possible states is a computable
box B.

The dependence s = s(t, s0) is usually continuous (and computable) for
s0 ∈ B. Hence, the function that maps a real number t into the distance
d(s(t, s0), S) is also continuous. Therefore, the required that this distance is
positive for all t ∈ [t0, T] can be equivalently reformulated as

F (s0)
def
= inf

t∈[t0,T]
d(s(t, s0), S) > 0.

As we mentioned earlier, the infimum of a computable function is also com-
putable, so the function F (s0) is computable. So, what we want is, given a
computable function F (s0), to approximate the set {s0 : F (s0) > 0} as closely
as possible.

Need for inner approximations. The usual technique of computable sets
provides us with outer approximations to this set. We also want to have inner
approximations; namely, we want to make sure that:

• if we have selected a point s0 from avoidance set,

• then even if we implement the corresponding starting state with some
accuracy, we will still be in the avoidance set.

In other words, we want to make sure that the whole neighborhood of the
corresponding points s0 belong to the desired avoidance set.

4 Main Computational Result

Proposition. There exists an algorithm that, given a computable function f(x)
on an n-dimensional computable box B and a natural number m, produces a
finite list of tuples x(1), . . . , x(N) ∈ B and a computable real number r > 0 such
that

{x : f(x) > 2−m} ⊆
N∪
i=1

Dr

(
x(i)

)
⊆ {x : f(x) > 0}.

Comment. This results provides both the outer approximations and the desired
inner approximations to the avoidance set.

Notational comment. Here, as before, Dr

(
xi)

)
denotes the set of all the points

x for which d
(
x, x(i)

)
≤ r.

6

Practical comment. Strictly speaking, we are not exactly computing the set
{x : f(x) > 0}, but it is OK: e.g., for the function F (s0), the requirement
F (s0) > 2−m means that we keep the distance from the to-be-avoided set to be
at least 2−m. For large m, from the practical viewpoint, 2−m is the same as 0.
(So, if we strengthen our requirement this way, we are not missing too many
initial states.)

Mathematical comment. The Proposition holds not only for tuples of real num-
bers, but also for functions on general metrics spaces – e.g., for quantum states
which are elements of the Hilbert space, an infinite-dimensional analog of the
finite-dimensional Euclidean space. Let us therefore consider computable sets
in a general metric space.

Informally, we need to have approximating elements. Each approximating
element can be described in a computer, so it must be described by a finite
sequence of symbols – and thus, encoded by a natural number. Thus, we can
describe these approximating elements as a sequence of elements a1, . . . , an, . . .

Since we are interested in computable metric spaces, there should be an
algorithm that, given two natural numbers m and n, computes the distance
d(am, an). A general element of a metric space is computable if, given n, we
can find an element am which is 2−n-close to this element. So, we arrive at the
following definition.

Definition 5.

• By a computable metric space, we mean a triple consisting of a metric
space M with distance d(a, b), a sequence of elements a1, . . . , an, . . . which
is everywhere dense in M , and an algorithm that, given natural numbers
m and n, returns a computable number d(am, an).

• By a computable element of a computable metric space, we mean a pair
consisting of an element a ∈ M and an algorithm that, given a natural
number n, returns an integer k(n) for which

d(a, ak(n)) ≤ 2−n.

For every two computable elements a, a′ ∈ M , we can use the appropriate
approximations to compute the distance d(a, a′). The above notion of a com-
putable set and a computable function can be naturally extended to general
computable metric spaces.

Definition 6. By a computable function from a computable metric space M to a
computable metric space B we mean a triple consisting of a function f : M → B
and the following two algorithms:

• an algorithm that, given a natural number n, computes f(an) ∈ B; and

• an algorithm that, given a natural number n, returns a natural number m
for which d(a, a′) ∈ 2−m implies d(f(a), f(a′)) ≤ 2−n.

7

Proof of the Proposition.

1◦. Let us first construct the desired tuples x(1), . . . , x(N) and the desired value r.

Since the function f(x) is computable, there exists an integer p for which
d(x, x′) ≤ 2−p implies that |f(x)− f(x′)| ≤ 2−(m+2). We then choose r = 2−p.

For each variable xi, let us list the values xi, xi + h, xi + 2h, . . . , xi, where

h ≤ 2−p

√
n
, and let us list all possible tuples combining these values.

Then, for each point x ∈ B and for every i, we can find an h-close listed
value. By combining these listed values, we can find a listed tuple s in which
each i-th difference differs by h (|xi− si| ≤ h), and thus, the Euclidean distance
is bounded:

d(x, s) =

√√√√ n∑
i=1

(xi − si)2 ≤
√
h2 + . . .+ h2 (n times) =

h ·
√
n = 2−p.

For each of the listed tuples x, we compute f(x) with accuracy 2−(m+2),
resulting in a rational value r(x) for which |f(x)− r(x)| ≤ 2−(m+2). Let us now
select, as x(1), . . . , x(N), those listed tuples x for which r(x) > 2−(m+1).

2◦. Let us now prove that
N∪
i=1

Dr

(
x(i)

)
⊆ {x : f(x) > 0}.

In other words, let us prove that if d
(
x, x(i)

)
≤ r, then f(x) > 0. Indeed,

by our choice of p and r = 2−p, the inequality d
(
x, x(i)

)
≤ r implies that∣∣f(x)− f

(
x(i)

)∣∣ ≤ 2−(m+2).

By the choice of the values x(i), we have r
(
x(i)

)
> 2−(m+1), where, by

definition of r(x), we have
∣∣r (x(i)

)
− f

(
x(i)

)∣∣ ≤ 2−(m+2). Thus,

f
(
x(i)

)
≥ r

(
x(i)

)
− 2−(m+2) > 2−(m+1) − 2−(m+2) = 2−(m+2).

From
∣∣f(x)− f

(
x(i)

)∣∣ ≤ 2−(m+2), we can now conclude that

f(x) ≥ f
(
x(i)

)
− 2−(m+2) > 2−(m+2) − 2−(m+2) = 0,

so indeed f(x) > 0.

3◦. To complete the proof, let us prove that {x : f(x) > 2−m} ⊆
N∪
i=1

Dr

(
x(i)

)
.

In other words, we need to prove that if f(x) > 2−m, then we have
d
(
x, x(i)

)
≤ r for some i.

Indeed, let f(x) > 2−m. By construction of the listed tuples, there is a
listed tuple s for which d(s, x) ≤ 2−p = r. Let us show that the tuple s is

8

among the tuples x(i). Indeed, by our choice of p and r, we can conclude that
|f(x)− f(s)| ≤ 2−(m+2) and thus, that

f(s) ≥ f(x)− 2−(m+2) > 2−m − 2m+2 = 3 · 2−(m+2).

So, from |r(s)− f(s)| ≤ 2−(m+2), we conclude that

r(s) ≥ f(s)− 2−(m+2) > 3 · 2−(m+2) − 2−(m+2) = 2 · 2−(m+2) = 2−(m+1),

i.e., that r(s) > 2−(m+1). Satisfying this inequality was exactly the criterion
that we used for choosing the points x(i). Since the listed point s satisfies this
inequality, we thus conclude that s is one of the points x(i). So, the inequality
d(x, s) ≤ r means that d

(
x, x(i)

)
≤ r for an appropriate i.

The statement is proven, and so is the proposition.

5 Computability of the Set-Valued Identifica-
tion Problem

Practical need for set estimation. In many practical situations, we are
interested in the values of physical quantities x1, . . . , xn which are difficult or
impossible to measure directly. For example, we may be interested in the spatial
coordinates of a robot.

Since we cannot measure these quantities directly, we measure them indi-
rectly, i.e., we measure quantities y1, . . . , yJ which are connected to the desired
quantities xi in the known way, as yj = fj(x1, . . . , xn). In some situations, in-
stead of this dependence, we know the dependence of the corresponding quantity
yj on the desired quantities xi and on the auxiliary quantities c1, . . . , cℓ which,
in their turn, can be measured directly: yj = fj(x1, . . . , xn, c1, . . . , cℓ).

The results ỹj and c̃k of the corresponding measurements are, in general,
different from the actual (unknown) values yj and ck of these quantities. In many
practical situations, the only information that we have about the measurement

errors ∆yj
def
= ỹj − yj and ∆ck

def
= c̃k − ck are the upper bounds ∆yj and ∆ck

on their absolute values: |∆yj | ≤ ∆yj and |∆ck| ≤ ∆ck; see, e.g., [8].
In this case, after we get the measurement results ỹj and c̃k, the only infor-

mation that we have about the desired values xi is that there exists yj and ck
for which:

• yj = fj(x1, . . . , xn, c1, . . . , cℓ) for all j;

• |yj − ỹj | ≤ ∆yj for all j; and

• |ck − c̃k| ≤ ∆ck for all k.

Our goal is to find the set X of all tuples x = (x1, . . . , xn) that are consistent
with the measurement results – i.e., which satisfy the above three requirements.

9

What is known and what we do in this section. There exist several
efficient algorithms for computing the set X in several important situations;
see, e.g., [4]. In this section, we analyze the algorithmic computability of this
problem in the general situation, for general computable functions fj .

Analysis of the problem. The requirement on the tuple x is that for some

ck ∈ ck
def
= [c̃k −∆ck, c̃k +∆ck], we have ∆yj − |fj(x, c)− ỹj | ≥ 0 for all j, i.e.,

equivalently, that we have F (x, c) ≥ 0, where we denoted:

F (x, c)
def
= min

j=1,...,J
(∆yj − |fj(x, c)− ỹj |).

This requirement, in its turn, can be equivalently represented as f(x) ≥ 0, where
we denoted

f(x)
def
= inf

ck∈ck

F (x, c).

In accordance with the above-mentioned results, the functions F (x, c) and f(x)
are computable.

Conclusion. The set X of all the states consistent with our knowledge has the
form {x : f(x) ≥ 0}. Thus, we can apply the Proposition and conclude that
this set is – in some reasonable sense – computable.

To be more precise, we compute a set which is not exactly equal to the
desired set X = {x : f(x) ≥ 0}, but which is intermediate between close sets
{x : f(x) > 2−m} and {x : f(x) > 0}.

For our identification problem, the condition f(x) > 2−m means, in effect,
that we consider bounds ∆yj − 2−m instead of the original bounds ∆yj . As we
have mentioned earlier, for large m, the new bound is practically indistinguish-
able from ∆yj . So, from the practical viewpoint, our Proposition indeed implies
that the set X of all possible states is computable.

6 The Above Algorithms Can Be Extended to
the General Case of Quantified Constraints

In the avoidance problem, we considered a constraint of the type f(t, c) > 0 for
all t, where f(t, c) is a computable function. To find the set of all the values c
that satisfy this constraint, we reformulated this constraint in an equivalent for

F (c) > 0, where the function F (c)
def
= min

t
f(t) is also computable.

In the set-valued identification problem, we were interested in the constraint
of the type f(t, c) ≥ 0 for some t. This constraint was reformulated in an

equivalent form F (c) ≥ 0, for a computable function F (c)
def
= max

t
f(t, c).

A similar idea can be applied to general quantified constraints, i.e., con-
straints of the type

∀t1 ∃t2 . . . ∀tk ∃tk+1 f(t1, t2, . . . , tk, tk+1, c) > 0

10

or
∀t1 ∃t2 . . . ∀tk ∃tk+1 f(t1, t2, . . . , tk, tk+1, c) ≥ 0

for some computable function f(t1, t2, . . . , tk, tk+1, c).
Indeed, the condition ∃tk+1 f(t1, . . . , tk, tk+1, c) > 0 is equivalent to

f1(t1, . . . , tk, c)), where the function

f1(t1, . . . , tk, c)
def
= max

tk+1

f(t1, . . . , tk, tk+1, c)

is also computable.
Thus, the condition

∀tk (∃tk+1 f(t1, . . . , tk−1, tk, tk+1, c) > 0)

is equivalent to ∀tk f1(t1, . . . , tk−1, c) > 0 and so, to f2(t1, . . . , tk−1, c) > 0,
where the function

f2(t1, . . . , tk−1) = min
tk

f1(t1, . . . , tk−1, tk, c) = min
tk

max
tk+1

f(t1, . . . , tk, tk+1, c)

is also computable.
In general, each quantified constraint is thus equivalent to, correspondingly,

F (c) > 0 or F (c) ≥ 0, where

F (c)
def
= min

t1
max
t2

. . .min
tk

max
tk+1

f(t1, t2, . . . , tk, tk+1, c)

is a computable function.
Thus, by using the above algorithms, we can compute the corresponding

sets.

Acknowledgments

This work was supported in part by the National Science Foundation grants
CAREER 0953339, HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of
Excellence) and DUE-0926721, and by an award “UTEP and Prudential Ac-
tuarial Science Academy and Pipeline Initiative” from Prudential Foundation.
This research was performed during Anthony Welte’s visit to the University of
Texas at El Paso.

References

[1] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York,
1967.

[2] A. Chaputot, J. Alexander dit Sandretto, and O. Mullier, SYNIBEX,
http://perso.ensta-paristech.fr/c̃haputot/dynibex, 2015.

11

[3] B. Desrochers and L. Jaulin, “Computing a guaranteed approximation for
the zone explored by a robot”, IEEE Transaction on Automatic Control,
2016.

[4] L. Jaulin, M. Kiefer, O. Dicrit, and E. Walter, Applied Interval Analysis,
Springer, London, 2001.

[5] O. Heimlich, GNU Octave Interval Package. Version 1.4.1,
http://octave.sourceforge.net/interval/, 2016.

[6] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complex-
ity and Feasibility of Data Processing and Interval Computations, Kluwer,
Dordrecht, 1997.

[7] T. Le Mézo, L. Jailin, and B. Zerr, “Inner approximation of a capture basin
of a dynamical system”, Abstracts of the 9th Summer Workshop on Interval
Methods SWIM’2016, Lyon, France, June 19–22, 2016.

[8] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Prac-
tice, Springer Verlag, Berlin, 2005.

[9] N. Ramdani and N. S. Nedialkov, “Computing reachable sets for uncertain
nonlinear hybrid systems using interval constraint propagation techniques”,
Nonlinear Analysis: Hybrid Systems, 2011, Vol. 5, No. 2, pp. 149–162.

[10] N. Revol, K. Makino, and M. Berz, “Taylor models and floating-point arith-
metic: proof that arithmetic operations are validated in COSY”, Journal of
Logic and Algebraic Pprogramming, 2005, Vol. 64, No. 1, pp. 135–154.

[11] K. Weihrauch, Computable Analysis, Springer Verlag, Berlin, 2000.

[12] D. Wilczak and P. Zgliczynski, “Cr-Lohner algorithm”, Schedae Informat-
icae, 2011, Vol. 20, pp. 9–42.

12

	University of Texas at El Paso
	DigitalCommons@UTEP
	9-2016

	Computability of the Avoidance Set and of the Set-Valued Identification Problem
	Anthony Welte
	Luc Jaulin
	Martine Ceberio
	Vladik Kreinovich
	Recommended Citation

	tmp.1480531969.pdf.vL6oZ

