
Towards Fast and Reliable Localization of an

Underwater Object: An Interval Approach

Quentin Brefort1, Luc Jaulin1,
Martine Ceberio2, and Vladik Kreinovich2

1ENSTA-Bretagne, LabSTICC, IHSEV, OSM
2 rue François Verny, 29806 Brest, France

Quentin.Brefort@ensta-bretagne.org
luc.jaulin@ensta-bretagne.fr

2Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, Texas 79968, USA

mceberio@utep.edu, vladik@utep.edu

Abstract

To localize an underwater object, we measure the distance to this ob-
ject from several sonar sensors with known locations. The problem is
that the signal sent by some of the sonars is reflected not by the de-
sired object(s), but by some auxiliary object and thus, the values mea-
sured by these sensors are drastically different from the distance to the
desired object. To solve this problem, currently probabilistic methods
are used; however, since we do not know the exact probability distribu-
tions, these methods may miss the actual location of the object. There
exist interval-based methods which provide guaranteed (reliable) bounds
on the object’s location, but these methods sometimes require too much
computation time. In this paper, we propose a new faster algorithm for
reliable localization of underwater objects.

1 Formulation of the Problem

Localizing an underwater object: general idea. In some practical situ-
ations, we need to find the spatial location x⃗ = (x1, x2, x3) of an underwater
object: for example, of a mobile underwater robot or an adversary’s submarine.

To locate this object, we can use a network of stationary omnidirectional
sonars whose locations s⃗1, . . . , s⃗n are known. A sonar emits an acoustic signal.
This signal is reflected by the object, and the reflection is detected by a sensor
attached to the sonar. The sensor measures the time that passes from the

1

emission of the original signal to the detection of the reflected signal. Since we
know the speed of sound in water, we can thus measure the distance d(s⃗i, x⃗)
from the i-th sensor to the object.

Once we know the distances from the object to several sensors, we can de-
termine the coordinates x⃗ of this object.

Comment. A similar problem occurs in GPS-based localization; see, e.g., [1].

In principle, this problem is solvable. Once we know the distance di
def
=

d(s⃗i, x⃗) from the object to the i-th sensor, we thus get an equation with three
unknown coordinates x1, x2, and x3.

In general, once the number of equations is larger than or equal to the
number of unknowns, this system of equations has a unique solution. Thus, if
we use at least three different sensors, we can find all three coordinates and so,
locate the object.

In practice, we face challenges. The above argument describes the ideal
case, when all the measurements are exact, and all the measurement results are
absolutely reliable.

In practice, measurements are never absolutely exact, the measurement re-
sult d̃i is, in general, somewhat different from the actual (unknown) distance
di; see, e.g., [8].

Also, sometimes the signal from some sonars gets reflected not from the
desired object, but from some other objects – or from the shore, or from a
surface separating two layers of water. In this case, the reading d̃i of this sensor
is an outlier, it has nothing to do with the actual distance di.

How this problem is solved now: probabilistic approach. We cannot

predict the exact values of the measurement error ∆di
def
= d̃i − di, we can, at

best, based on our prior experience, predict how frequent are different values
of measurement error. In other words, we can, in principle, determine the
probabilities of different values ∆di.

Similarly, we cannot easily determine which measurement results correspond
to reflections from the object and which to reflection from other objects. How-
ever, in principle, based on the prior experiences, we can determine the proba-
bility of a measurement result being an outlier.

Because of this, traditionally, probabilistic methods are used to locate an
underwater robot.

Limitations of the probabilistic approach. The probabilistic approach is
a perfect way to solve the localization problem in situations when we know all
the probabilities. In most practical situations, however, we only have a partial
knowledge of these probabilities – i.e., we have an approximate probabilistic
model. We then use this approximate model.

It is worth mentioning that as we perform more and more measurements,
we can use the measurement results to update the corresponding probability
distributions – e.g., by using the Kalman filter techniques.

2

The problem with this approach is that it uses a (very) approximate prob-
abilistic model which is, in general, different from the actual (unknown) proba-
bilities. As a result, this method may miss the object.

For example, if we assume that the measurement errors are normally dis-
tributed, then, with probability 99.9%, all measurement results are within the 3
standard deviations (3σ) from the measured values; thus, with this high confi-

dence, we conclude that the object is at a distance between d̃i−3σ and d̃i+3σ.
However, for many measurement procedures, the corresponding probability de-
creases with ∆x as a power law [8], for which deviations larger than 3σ are
probable. When such a deviation occurs, the actual distance from the sensor is
outside the interval [d̃i − 3σ, d̃i + 3σ] that our method reports.

Such a miss can be disaster: in research and underwater mineral exploration,
we may lose an expensive robots; in military applications, losing track of an
adversary’s attack-capable submarine may lead to an even more serious disaster.

To avoid such disasters, we need to produce guaranteed (reliable) bounds on
the location of the object.

Reliable methods for localizing underwater robots: interval approach.
The manufacturer of the measuring instrument always provides us with the up-
per bound ∆ on the measurement error. For measuring distance, this manufacturer-
provided upper bound, in general, depends on the distance: usually, shorter
distances are measured more accurately than the longer ones. As a result, for
each measured value d̃i, we know the upper bound ∆i on the corresponding
measurement error ∆di = d̃i − di: |∆di − di| ≤ ∆i.

As a result, once we know the measurement result d̃i, we can conclude that
the actual (unknown) distance di is between the bounds: d̃i − ∆i ≤ di ≤
d̃i+∆i. In other words, we conclude that the distance di belongs to the interval
[d̃i −∆i, d̃i +∆i].

Situations when for each measured quantity, we only know an interval con-
taining its actual value, are ubiquitous; see, e.g., [8]. To process such data,
special interval computations techniques have been invented; see, e.g., [2, 7].
It is therefore reasonable to use interval methods to get guaranteed (reliable)
bounds on the actual (unknown) location of the robot.

Such a scheme is presented, e.g., in [3]. For each sonar i, the robot is located
in the ring Si formed by the two circles centered around this sonar: the ring
between the circle corresponding to distance d̃i−∆i and the circle corresponding
to the distance d̃i +∆i. If all the recorded values d̃i corresponded to the robot,
then we could find the set S of possible locations of the robot as the intersection
of the sets Si corresponding to all m sonars. In real life, as we have mentioned,
some measurements come from other objects; in this case, some of the sets Si

reflect locations of these other objects, and thus, the overall intersection may
be empty. We need to take this fact into account.

The actual location of the robot belongs to the intersection of all the sets
Si for all i for which the i-th sensor detects the reflection from the robot. One
or more other sensors may detect reflection from another object(s); thus, the
intersection of the corresponding sets Sj contains the location of that other

3

object. Usually, most sensors detect reflection from the sensor, so we can find
the actual location of the sensor as a non-empty intersection of a subfamily of
the family of all the sets Si – a subfamily for which the number of intersecting
sets with non-empty intersection is the largest possible.

To locate the robot, we therefore use a Guaranteed Outlier Minimal Num-
ber Estimator (GOMNE) described in [2, 4, 5]. This algorithm first finds the
largest possible value q for which the intersection of q sets Si is non-empty, then
finds the corresponding “q-relaxed intersection”, i.e., the union of all non-empty
intersections of q sets Si:

∪
I:#(I)=q

∩
i∈I

Si. To compute the corresponding intersec-

tions, GOMNE uses SIVIA (Set Inversion via Interval Analysis), an algorithm
described in [2].

Simulations show that in more than 90% of the cases, the resulting algorithm
finds the correct location of the robot, which is much more efficient than for the
previously known reliable methods of locating underwater robots.

Main limitation of the existing interval approach: it is too slow. Off-
line, the above interval methods works perfectly well. However, we need to
determine the object’s coordinates in real time. The object is moving, so we
need to know its location before it moved away from this location. As the
number of sensors increases, the needed computation time increases drastically
– so that it exceeds the time needed to real-time computations.

It is therefore necessary to develop faster algorithms for reliable localization
of underwater objects.

What we do in this paper. In this paper, we propose a new interval-based
method for fast and reliable localization of underwater objects.

Comment. To make our description clearer, we illustrate our main ideas on the
simplified example of a 2-D localization. These ideas can be easily expanded to
a more realistic 3-D localization problem – and in our description, we explain
how they can be expanded.

2 Analysis of the Problem

Two stages of localization. Once we have located an object, we repeatedly
send sonar signals to find its updated location. In this paper, we will denote
the time interval between two sequential measurements by ∆t.

From the computational viewpoint, it is therefore reasonable to consider two
stages of the localization process:

• first, we have no prior information on where the object is, and we need to
find its initial coordinates x⃗;

• on the second stage, we know the approximate location x⃗0 ≈ x⃗(t − ∆t)
of the object at the previous moment of time t − ∆t (and we know the
accuracy ε0 of this approximation), and we want to use this information, as

4

well as the results of the measurements performed at the current moment
of time t, to find the object’s current location x⃗(t).

Which stage is easier? In general, the more information we have, the better:
we get more accurate estimates, and we can often use more computationally
efficient algorithms. For sure, the additional information cannot worsen the
performance: if the new information does not lead to a more accurate or faster
estimation, we can simply ignore it.

From this viewpoint, let us compare the two stages that we described in the
previous subsection. At the first stage, all we know are measurement results.
At the second stage, in addition to the measurement results, we also have an
additional information: we know the previous location of the object. Thus, the
localization problem corresponding to the second stage is easier to solve.

Because of this comparison, we will start our analysis with this easier-to-
solve second stage, and then we will explain how our ideas can be expanded to
the more-difficult-to-solve second stage.

Measurements are frequent. To prevent losing track of the object, the
existing sonar systems perform measurements very frequently. Thus, the time
interval ∆t between the two consequent measurements is usually very small.

We know the upper bound v on the velocity of the underwater object. Thus,
during the time ∆t, the object cannot move further away than the distance

ε
def
= v ·∆t: d(x⃗(t), x⃗(t−∆)) ≤ ε.
We also know the approximate location x⃗0 of the object at moment t−∆t,

and we know the accuracy ε0 of this approximation. Thus, we have d(x⃗(t −
∆t), x⃗0) ≤ ε0. By the triangle inequality, we now have

d(x⃗(t), x⃗0) ≤ d(x⃗(t), x⃗(t−∆)) + d(x⃗(t−∆t), x⃗0) ≤ ε+ ε0.

Resulting constraints on ∆x⃗
def
= x⃗(t)− x⃗0. The result d̃i of the i-th measure-

ments constraints the actual location x⃗(t). Let us reformulate this constraint in

terms of the difference ∆x⃗
def
= x⃗(t)− x⃗0.

Once we know this difference, we can easily reconstruct the actual location
x⃗ as x⃗ = x⃗0 +∆x⃗.

We know that d̃i −∆i ≤ d(x⃗(t), s⃗i) ≤ d̃i +∆i. By squaring all three sides of
this double inequality, we get

(d̃i −∆i)
2 ≤ d2(x⃗(t), s⃗i) ≤ (d̃i +∆i)

2. (1)

Here,
d2(x⃗(t), s⃗i) = (x⃗(t)− s⃗i)

2.

In terms of the difference ∆x⃗, we have x⃗(t) = x⃗0 +∆x, thus

d2(x⃗(t), s⃗i) = (x⃗0 +∆x⃗− s⃗i)
2 = ((x⃗0 − s⃗i) + ∆x⃗)2 =

5

(x⃗0 − s⃗i)
2 + 2∆x⃗ · (x⃗0 − s⃗i) + (∆x⃗)2. (2)

Substituting the expression (2) into the formula (1), we get

(d̃i −∆i)
2 ≤ (x⃗0 − s⃗i)

2 + 2∆x⃗ · (x⃗0 − s⃗i) + (∆x⃗)2 ≤ (d̃i +∆i)
2.

Subtracting (x⃗0 − s⃗i)
2 + (∆x⃗)2 from all the sides of this inequality, we get

(d̃i −∆i)
2 − (x⃗0 − s⃗i)

2 − (∆x⃗)2 ≤ 2∆x⃗ · (x⃗0 − s⃗i) ≤

(d̃i +∆i)
2 − (x⃗0 − s⃗i)

2 − (∆x⃗)2. (3)

We know that 0 ≤ (∆x⃗)2 ≤ (ε + ε0)
2, so −(ε + ε0)

2 ≤ −(∆x⃗)2 ≤ 0 and thus,
(3) implies that

(d̃i−∆i)
2−(x⃗0− s⃗i)

2−(ε+ε0)
2 ≤ 2(x⃗0− s⃗i) ·∆x⃗ ≤ (d̃i+∆i)

2−(x⃗0− s⃗i)
2, (4)

or, equivalently,
vi ≤ a⃗i ·∆x⃗ ≤ vi, (5)

where we denoted
a⃗i

def
= 2(x⃗0 − s⃗i), (6)

vi
def
= (d̃i −∆i)

2 − (x⃗0 − s⃗i)
2 − (ε+ ε0)

2, (7)

and
vi

def
= (d̃i +∆i)

2 − (x⃗0 − s⃗i)
2. (8)

For interval computations, it is often convenient to express an interval [vi, vi]

by its midpoint ṽi
def
=

vi + vi
2

and its radius (half-width) δi
def
=

vi − vi
2

; see, e.g.,

[2, 7]. In these terms, the interval takes the form [vi, vi] = [ṽi − δi, ṽi + δi], and
the double inequality (5) takes the form

a⃗i ·∆x⃗ ∈ [ṽi − δi, ṽi − δi]. (9)

In our case, from (7) and (8), we conclude that

ṽi = (d̃i)
2 +∆2

i − (x⃗0 − s⃗i)
2 − 1

2
· (ε+ ε0)

2; (10)

δi = 2d̃i ·∆i +
1

2
· (ε+ ε0)

2; (11)

Let us consider all pairs of sensors (triples, in 3-D case). Let us first
consider a 2-D case. Let us assume that two sensors i and j both detect the
reflection from the object. In this case, the difference ∆x⃗ satisfies two conditions:

a⃗i ·∆x⃗ ∈ [ṽi − δi, ṽi + δi]; (12a)

a⃗j ·∆x⃗ ∈ [ṽj − δj , ṽj + δj] (12b).

6

The fact that the scalar (dot) product ∆x⃗ · a⃗i belongs to the interval [ṽi−δi, ṽi+

δi] means that the absolute value of the difference ∆vi
def
= ∆x⃗ · a⃗i − ṽi does not

exceed δi: |∆vi| ≤ δi. In terms of the values ∆vi and ∆vj , the conditions (12a)
and (12b) can be described as

a⃗i ·∆x⃗ = ṽi +∆vi; (13a)

a⃗j ·∆x⃗ = ṽj +∆vj . (13b)

with |∆vi| ≤ δi and |∆vj | ≤ δj .
In coordinate terms, ∆x⃗ = (∆x1,∆x2), a⃗i = (ai1, ai2), a⃗j = (aj1, aj2), and

the system (13) takes the form

ai1 ·∆x1 + ai2 ·∆x2 = ṽi +∆vi; (14a)

aj1 ·∆x1 + aj2 ·∆x2 = ṽj +∆vj , (14b)

i.e., in matrix form,
A(∆x) = v, (15)

where

A
def
=

(
ai1 ai2
aj1 aj2

)
.

Thus, for the matrix B = A−1 with components B =

(
b1i b1j
b2i b2j

)
, we have

∆x = B · v, i.e., we have, for m = 1, 2:

∆xm = bmi · (ṽi +∆vi) + bmj · (ṽj +∆vj). (16)

From (16), we get
∆xm = x̃m + δxm, (17)

where
x̃m

def
= bmi · ṽi + bmj · ṽj ; (18)

δxm
def
= bmi ·∆vi + bmj ·∆vj . (19)

We know that |∆vi| ≤ δi and |∆vj | ≤ δj . In general, by considering two
cases c ≥ 0 and c ≤ 0, one can easily check that the largest value of a linear
function c · x for |x| ≤ t is equal to |c| · t. Thus, the largest possible value of the
expression (19) is equal to

rm
def
= |bmi| · δi + |bmj | · δj . (20)

Thus, for each m = 1, 2, if both measurements i and j measure reflections from
the desired object (and not from some other object), then we conclude that

∆xm ∈ [xm, xm]
def
= [x̃m − rm, x̃m + rm]. (21)

7

In the 3-D case, formulas are similar, the only difference is that to find three
coordinates, we need to consider triples of sensors (i, j, k), and thus, we need to
invert the corresponding 3× 3 matrices.

From intervals corresponding to all possible pairs (or triples) to actual
location of the underwater object. We assume that out of n sensors, the
vast majority q detect the reflection from the actual object. Thus, out of possible
n · (n− 1)

2
pairs of sensors, for

q · (q − 1)

2
pairs – the majority – the above

procedure will lead to an interval containing the actual location of the robot.
For some other pairs of sensors, we will get the location of an auxiliary

object (when both sensors detect signals reflected form that object) or just a
meaningless interval – when two sensors detect reflections from different objects.

As a result, the intersection of all the intervals [xm, xm] corresponding to
all possible pairs is usually empty: the actual locations are contained in many
such intervals, while the locations of auxiliary objects are contained in few such
intervals.

For each real number, we can find the number of intervals [xm, xm] containing
this number. Based on the above analysis, as possible locations of the object,
we should select the set of all the points for which the number of containing
intervals is the largest possible.

This set can be computed as follows (see, e.g., [6]):

• first, we sort all the endpoints xm and xm corresponding to all the pairs
(triples) of sensors, into an increasing sequence

x(0)
def
= −∞ < x(1) ≤ x(2) ≤ . . . ≤ x(N) < x(N+1)

def
= +∞;

• then, for k = 0, 1, . . . , N , we sequentially compute the number Ik of inter-
vals [xm, xm] that contain values from the interval [x(k), x(k+1)] as follows:

– we start with I0 = 0;

– once we know Ik−1, we take Ik = Ik−1 + 1 if x(k) is one of the lower
bounds xm (so, a new containing interval is added) and we take
Ik = Ik−1 − 1 if x(k) is one of the upper bounds xm (so, one of the
containing intervals is deleted).

• Then, we find the largest of the values I0, . . . , IN , and we return the
interval [x(k), x(k+1)] for which Ik is equal to this largest value. If there
are several such indices k corresponding to different values k, we return
the interval [x(k), x(k+1)], where k is the smallest of such indices and k is

the largest of such indices.

What about the first stage. The above ideas described the second stage,
when we already know the location of the robot at the previous moment of time
t−∆t.

8

What about the first stage, when we have no prior information about the
robot’s location? On the first stage, we can repeat the same procedure – i.e.,
consider all pairs (or all triples) of sensors, and find the interval corresponding
to the majority of sensors.

The only difference is that we do not know the previous location x⃗0 and
thus, we cannot use the above linearization technique – when we represented
the unknown location x⃗ as x⃗0 + ∆x⃗ and took into account that the difference
∆x⃗ is small. Instead, to find a possible location, we have to use the original
inequalities

(d̃i −∆i)
2 ≤ (x⃗− s⃗i)

2 ≤ (d̃i −∆i)
2; (22a)

(d̃j −∆j)
2 ≤ (x⃗− s⃗j)

2 ≤ (d̃j −∆j)
2; (22b)

(d̃k −∆k)
2 ≤ (x⃗− s⃗k)

2 ≤ (d̃k −∆k)
2. (22c)

If we knew the exact values di, dj , and dk of the distances, then we would
get a system

(x⃗− s⃗i)
2 = (x⃗)2 − 2s⃗i ·∆x+ (s⃗i)

2 = d2i ; (23a)

(x⃗− s⃗j)
2 = (x⃗)2 − 2s⃗j ·∆x+ (s⃗j)

2 = d2j ; (23b)

(x⃗− s⃗k)
2 = (x⃗)2 − 2s⃗k ·∆x+ (s⃗k)

2 = d2k. (23c)

If we subtract equation (23a) from each of the equations (23b) and (23c), then
we get two equations which are linear in x⃗, i.e., linear in terms of the three
coordinates x1, x2, and x3. We can use these two linear equations to express x2

and x3 as linear functions of x1. Substituting these linear expressions into the
equation (23a), we will then get an easy-to-solve quadratic equation for x1.

The only remaining problem is to take into account that instead of the exact
values d2i , we only have an interval of possible values [(d̃i−∆i)

2, (d̃i+∆i)
2]. This

can be taken into account by using standard interval computations techniques
such as centered form [2, 7].

Thus, we arrive at the following algorithm.

3 Resulting Algorithm

What is known. Before we start the measurements, we know:

• the time interval ∆t between two consequent measurements,

• the upper bound v on the possible velocity of the detected object, and

• for each i from 1 to n, the location s⃗i of the i-th sensor.

Based on these values, we pre-compute the value ε = v ·∆t.
After the measurements are performed, we know, for each i from 1 to n:

• the result d̃i of the i-th distance measurement, and

• the upper bound ∆i on the accuracy of this measurement.

9

At the first stage, when we have no prior information about the location of the
robot, this is all we know. Once we have detected the object, we reach the
second stage, at which, at each moment of time t, we also know:

• the estimated location x⃗0 = (x01, x02, x03) of the robot at the previous
moment of time t−∆t, and

• the accuracy ε0 with which we know this location, i.e., an upper bound
on the distance d(x⃗(t−∆t), x⃗0).

Algorithm: general description. First, we consider all possible triples of
sensors (pairs in the 2-D case), and we use the measurement results of these
three sensors to find, for each of the 3 coordinates m = 1, 2, 3, the interval
[xm, xm] of possible values of xm(t) (on the first stage) or ∆xm = xm(t)− x0m

(on the second stage).
For each m, we then:

• sort all the endpoints xm and xm into an increasing sequence

x(0)
def
= −∞ < x(1) ≤ x(2) ≤ . . . ≤ x(N) < x(N+1)

def
= +∞;

• then, for k = 0, 1, . . . , N , we sequentially compute the number Ik as fol-
lows:

– we start with I0 = 0;

– once we know Ik−1, we take Ik = Ik−1 + 1 if x(k) is one of the lower
bounds xm, and we take Ik = Ik−1 − 1 if x(k) is one of the upper
bounds xm.

• Then, we find the largest of the values I0, . . . , IN , and we return the
interval [x(k), x(k+1)] for which Ik is equal to this largest value. If there
are several such indices k corresponding to different values k, we return
the interval [x(k), x(k+1)], where k is the smallest of such indices and k is

the largest of such indices.

These intervals describe the object’s location:

• on the first stage, the intervals’ midpoints form the approximate location
vector x⃗0;

• on the second stage, these midpoints, when added to the previous location
x⃗0, form the new approximate location vector x⃗0.

On both stages, the square root of the sum of squares of radii of these intervals
is the (new) location accuracy ε0.

How to compute the intervals [xm, xm]? To complete this description,
we need to describe how to compute the intervals [xm, xm] corresponding to
different triples of sensors.

10

This computation is different on the first stage, when we do not yet have any
prior information about the object, and on the second stage, when we already
know the object’s previous location. We will describe these two cases one by
one.

How to compute an interval [xm, xm] corresponding to sensors i, j,
and k: first stage. If we knew the exact values di, dj , and dk of the distances,
then we would get a system

(x⃗)2 − 2s⃗i ·∆x+ (s⃗i)
2 = d2i ; (24a)

(x⃗)2 − 2s⃗j ·∆x+ (s⃗j)
2 = d2j ; (24b)

(x⃗)2 − 2s⃗k ·∆x+ (s⃗k)
2 = d2k. (24c)

We subtract equation (24a) from each of the equations (24b) and (24c); as a
result, we get two equations which are linear in x⃗, i.e., linear in terms of the
three coordinates x1, x2, and x3. We use these two linear equations to express
x2 and x3 as linear functions of x1. Substituting these linear expressions into
the equation (24a), we get an easy-to-solve quadratic equation for x1. Once we
know x1, we can use the known linear formulas describing x2 and x3 in terms
of x1 to find the values of x2 and x3.

To take into account that instead of the exact values d2i , we only have an

interval of possible values [(d̃i − ∆i)
2, (d̃i − ∆i)

2], we use standard interval
computations techniques such as centered form.

How to compute an interval [xm, xm] corresponding to sensors i, j,
and k: second stage. For each sensor, we compute the values

ṽi = (d̃i)
2 +∆2

i − (x⃗0 − s⃗i)
2 − 1

2
· (ε+ ε0)

2; (10)

δi = 2d̃i ·∆i +
1

2
· (ε+ ε0)

2; (11)

and the vector a⃗i = 2(x⃗0 − s⃗i) with coordinates ai1, ai2, ai3).

Then, we form a matrix A =

 ai1 ai2 ai3
aj1 aj2 aj3
ak1 ak2 ak3

, and compute its inverse

matrix B =

 b1i b1j b1k
b2i b2j b2k
b3i b3j b3k

. For each m = 1, 2, 3, we compute x̃m = bmi ·

ṽi + bmj · ṽj + bmk · ṽk, rm = |bmi| · δi + |bmj | · δj + |bmk| · δk, xm = x̃m − rm,
and xm = x̃m + rm.

Acknowledgment

This work was supported in part by the US National Science Foundation grants
0953339, HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence)

11

and DUE-0926721. The work was performed when Quentin Brefort was visit-
ing the University of Texas at El Paso. This visit was supported by ENSTA-
Bretagne.

References

[1] V. Drevelle and P. Bonnifait, “iGPS: global positioning in urban canyons
with road surface maps”, IEEE Intelligent Transportation Systems Maga-
zine, 2012, Vol. 4, No. 3, pp. 6–18.

[2] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
Springer Verlag, London, 2001.

[3] L. Jaulin, A. Stancu, and B. Desrochers, “Inner and outer approximations
of probabilistic sets”, Proceedings of the American Society of Civil Engi-
neers (ASCE) Second International Conference on Vulnerability and Risk
Analysis and Management ICVRAM’2014 and Sixth International Sympo-
sium on Uncertainty Modelling and Analysis ISUMA’2014, Liverpool, UK,
July 13–16, 2014, to appear.

[4] L. Jaulin and E. Walter, “Guaranteed robust nonlinear minimax estima-
tion”, IEEE Transaction on Automatic Control, 2002, Vol. 47, No. 11,
pp. 1857–1864.

[5] L. Jaulin, E. Walter and O. Didrit, “Guaranteed robust nonlinear parame-
ter bounding”, Proceedings of Symposium on Modelling, Analysis and Sim-
ulation, part of IMACS Multiconference on IMACS Multiconference, Com-
putational Engineering in Systems Applications CESA’96, Lille, France,
July 9–12, 1996, Vol. 2, pp. 1156–1161.

[6] K. A. Marzullo, Maintaining the Time in a Distributed System: An Ex-
ample of a Loosely-Coupled Distributed Service, Stanford University, PhD
Dissertation, 1984.

[7] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. SIAM Press, Philadelphia, Pennsylviania, 2009.

[8] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Prac-
tice, Springer Verlag, Berlin, 2005.

12

