
Computations under Time Constraints: Algorithms
Developed for Fuzzy Computations Can Help

Karen Villaverde
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003, USA
Email: kvillave@cs.nmsu.edu

Olga Kosheleva and Martine Ceberio
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

Emails: {olgak,mceberio}@utep.edu

Abstract—In usual computers – that use binary representation
of real numbers – an irrational real number (and even a rational
number like 1.3 or 1.2) can only be computed with a finite
accuracy. The more accuracy we need, the larger the computation
time. It is therefore reasonable to characterize the complexity
of computing a real number a by the accuracy ∆a(t) that we
can achieve in time t. Once we know this characteristic for two
numbers a and b, how can we compute a similar characteristic
for, e.g., c = a + b? In this paper, we show that the problem
of computing this characteristic can be reduced to the problem
of computing the membership function for the sum – when we
use Zadeh’s extension principle with algebraic product as the
“and”-operation. Thus, known algorithms for computing this
membership function can be used to describe computations under
time constraints.

I. FORMULATION OF THE PROBLEM

Computing real numbers: a problem. In many practical
applications, a physical theory described the value of the
desired quantity in precise mathematical terms. For example,
it is known:

• that the length ℓ of the diagonal of a unit square is equal
to ℓ =

√
2;

• that the circumference c of a circle of unit radius is

c = 2π;

• that for a normally distributed random variable with 0
mean and standard deviation σ, the probability P that
this variable exceed 3σ is equal to

P =
1

2π
·
∫ ∞

3

exp

(
−x2

2

)
dx.

Often, we need to perform additional processing that uses
these values: for example, we can use the probability to
compute the expected value of the losses and profits and thus,
make a decision about a investment. To be able to perform
such processing, we need to represent the original values in the
computer. Often, we need to perform computations to produce
such a representation. Computations needed to produce this
representation are called computing the desired real number.

All the real numbers represented in the existing computers
are rational numbers, specifically, binary rational numbers
of the form

p

2q
, where p and q are integers. Thus, when a

number that we want to compute is irrational (e.g.,
√
2 or

π) or rational but not binary rational (e.g., 1/3 or 1.2), we
can only represent a rational approximation to this number. In
other words, an irrational real number can only be represented
(and, thus, computed) with a finite accuracy.

In precise terms, the problem is as follows. We are given a
mathematical description of a real number x – such as either√
2, or the above integral, or value x(t0) where t0 is a given

number and x(t) is a solution to a given differential equation
with given initial conditions. The problem is:

• given a rational number ε,
• compute a binary-rational number r for which |x−r| ≤ ε.

We can then say that r represents x with accuracy ε, or that,
by producing r, we have computed x with accuracy ε.

In each of the above examples, there exists an algorithm
that, given a rational number ε > 0, computes x with accuracy
ε (i.e., an algorithm that, given ε > 0, produces a binary-
rational number r for which |x − r| ≤ ε). Real numbers for
which such an algorithm is possible are called computable.

Need to take time constraints into account. The more accu-
racy we need, the larger the computation time. It is therefore
reasonable to characterize the complexity of computing a real
number a by the accuracy ∆a(t) (e.g., 10−3, 10−8, etc.) that
we can achieve in time t.

We are interested in algorithmically computable numbers,
i.e., numbers that we can, in principle, compute with an
arbitrary accuracy. For such numbers, the accuracy ∆a(t)
tends to 0 as t → ∞.

How to find accuracy of the result of data processing? A
general problem. As we have mentioned earlier, the main
reason why we compute different real numbers a, b, . . . ,
in the first place is that later on, we may be interested in
computing numbers of the type c = f(a, b, . . .) for some
computable function f(a, b, . . .) from real numbers (or tuples
of real numbers) into real numbers. Computing c based on the
known results of computing a, b, . . . , is usually called data
processing.

In other words, data processing is the last stage in com-
puting the real number c. For example, if we have previously
computed 2π, then, when we compute the above integral, we
can use the result of computing 2π.

978-1-61284-968-3/11/$26.00 ©2011 IEEE

Thus, once we know the characteristics ∆a(t), ∆b(t), . . . ,
that describe the complexity of computing the values a, b, . . . ,
it is desirable to compute a similar characteristic ∆c(t) for the
new number c = f(a, b, . . .).

This is the problem that we analyze in this paper.

The simplest case: estimating time complexity of the sum
of two numbers. Before we discuss the general problem, we
will pay a special attention to the simplest case of the above
problem. The simplest case is when we have the simplest
function f(a, b) = a+b. In this case, we arrive at the following
problem:

• we know the characteristics ∆a(t) and ∆b(t) correspond-
ing to numbers a and b, and

• we want to find the characteristic ∆c(t) corresponding to
c = a+ b.

Important comment. In this paper, we consider situations in
which computing c = a+b consists of the following two steps:

• first, we computing a and b (with some accuracy), and
• then, we add the resulting approximations ã and b̃ to a

and b.
It is worth mentioning that this is not always the fastest way to
compute the number c. For example, when a = π and b = −π,
then c = a+b = 0; in this case, a straightforward computation
of c = 0 is much faster than computing a = π first.

II. ESTIMATING TIME COMPLEXITY OF THE SUM OF TWO
NUMBERS: FORMULAS

Analysis of the problem. According to the above assumption,
if we want to compute c = a+ b in time t, we should spend
some time computing a, then some time computing b, and
then some time adding a and b.

Let us denote the time that we spend on computing a by
ta and the time that we spend on computing b by tb. For
simplicity, we assume that computing the sum requires a single
computation step and that we measure time not in seconds,
but in such steps. Under these assumptions, adding two
approximations requires 1 unit of time. The total computation
time t is equal to the sum of the computation times required
for all three steps, i.e., t = ta + tb + 1.

By definition of the characteristic ∆a(t), during the time
ta, at best we can compute a with an accuracy ∆a(ta). In
other words, at best, we can compute an approximation ã for
which |ã − a| ≤ ∆a(ta). Similarly, during the time tb, at
best we can compute b with an accuracy ∆b(tb). In other
words, at best, we can compute an approximation b̃ for which
|̃b − b| ≤ ∆b(tb). From these inequalities, we conclude that
the difference between the computed value c̃ = ã+ b̃ and the
desired value c = a+ b is bounded by

|c̃− c| = |(ã+ b̃)− (a+ b)| = |(ã− a) + (̃b− b)| ≤

|ã− a|+ |̃b− b| ≤ ∆a(ta) + ∆b(tb).

Thus, the most accurate approximation occurs when we select
ta and tb so as to guarantee the smallest possible bound

∆a(ta) + ∆b(tb). In other words, we arrive at the following
expression.

Resulting formula:

∆c(t) = min
ta,tb: ta+tb+1=t

(∆a(ta) + ∆b(tb)). (1)

Important simplification. Computation is a problem when
ta ≫ 1 and tb ≫ 1. In this case, we can safely ignore “1” in
the formula ta+ tb+1 = t and replace it with an approximate
equality ta+ tb = t. In this approximation, the above formula
(1) takes the following simplified form:

∆c(t) = min
ta,tb: ta+tb=t

(∆a(ta) + ∆b(tb)). (2)

What we plan to do. In this paper, we show that the existing
algorithms for processing fuzzy numbers can be used to find
the characteristic (2).

III. PROCESSING FUZZY NUMBERS: BRIEF REMINDER

Need to process fuzzy numbers. In many practical situations,
we have some information about the quantities x1, . . . , xn,
and we are interested in a quantity y that is related to xi

by a known dependence y = f(x1, . . . , xn). It is therefore
necessary to find out what information about y we can deduce
from the known information about xi.

An important particular case of this general problem is when
we have fuzzy information about xi; see, e.g., [3], [7]. In this
case, for each quantity xi, instead of an exact value xi, we
have a fuzzy number Xi characterizing this property, i.e., for
every value xi, we know the degree µi(xi) to which this value
is possible, i.e., to which it is possible that Xi = xi.

Using a standard notation ♢ for “possible” from modal
logic, we can describe the statement S

def
= “it is possible

that Xi = xi” as ♢(Xi = xi). In these terms, the value
µi(xi) is our degree of confidence d(S) in this statement S:
µi(xi) = d(♢(Xi = xi)).

Zadeh’s extension principle: derivation. For Y =
f(X1, . . . , Xn), the value y is possible if and only if there
exist values x1, . . . , xn for which it is possible that X1 = x1,
. . . , it is possible that Xn = xn, and y = f(x1, . . . , xn). In
other words,

♢(Y = y) ⇔ ∃x1, . . . , xn (y = f(x1, . . . , xn)&

♢(X1 = x1)& . . . &♢(Xn = xn)).

We want to estimate our degree of confidence µ(y) =
d(♢(Y = y)) in this statement.

We know the degrees of confidence

µi(xi) = d(♢(Xi = xi))

in individual statements ♢(Xi = xi). Following the general
ideas of fuzzy logic, we can then use a t-norm (a fuzzy “and”)

operation f&(a, b) to describe the degree of confidence in the
conjunction

♢(X1 = x1)& . . . &♢(Xn = xn) :

namely,

d(♢(X1 = x1)& . . . &♢(Xn = xn)) =

f&(d(♢(X1 = x1)), . . . , d(♢(Xn = xn)) =

f&(µ1(x1), . . . , µn(xn)).

The existential quantifier is, in effect, an infinite “or”
statement: namely, the above statement means that either the
formula y = f(x1, . . . , xn)&♢(X1 = x1)& . . . is true for
one tuple, or from another tuple, etc. So, to combine the
degrees f&(µ1(x1), . . . , µn(xn)) into the desired degree µ(y),
we must use a t-conorm (fuzzy “or” operation) f∨(a, b).

For most t-conorms, we have f∨(a, a) < a, so when we
apply it infinitely many times, the resulting degree tends to
0. The only case when we get a non-zero result is when
we use the maximum t-norm f∨(a, b) = max(a, b). In this
case, the desired degree µ(y) = d(♢(Y = y)) is equal to the
largest of the values f&(µ1(x1), . . . , µn(xn)) for all the tuples
(x1, . . . , xn) for which f(x1, . . . , xn) = y. Thus, we arrive at
the following formula:

Zadeh’s extension principle: resulting general formula.
Once we know the membership functions µ1(x1), . . . , µn(xn)
corresponding to n variables x1, . . . , xn, the membership
function µ(y) corresponding to y = f(x1, . . . , xn) takes the
form

µ(y) = max
x1,...,xn: f(x1,...,xn)=y

f&(µ1(x1), . . . , µn(xn)). (3)

The most most widely used fuzzy “and”-operations are the
minimum f&(a, b) = min(a, b) and the algebraic product
f&(a, b) = a · b. Thus, we arrive at the following formulas:

µ(y) = max
x1,...,xn: f(x1,...,xn)=y

min(µ1(x1), . . . , µn(xn)), (4)

which is the most widely used form of Zadeh’s extension
principle, and

µ(y) = max
x1,...,xn: f(x1,...,xn)=y

µ1(x1) · . . . · µn(xn). (5)

Simplest case of addition. For the simplest case of the
addition function f(ta, tb) = ta + tb, the above formulas take
the form

µ(t) = max
ta,tb: ta+tb=t

f&(µa(ta), µb(tb)); (6)

µ(t) = max
ta,tb: ta+tb=t

min(µa(ta), µb(tb)); (7)

and
µ(t) = max

ta,tb: ta+tb=t
µa(ta) · µb(tb). (8)

Straightforward computation of the expression (8). In
reality, we can only know the values of µa(x) and µb(x)

for finitely many values x. Let us denote the total number
of such values by n. In this case, it is reasonable to compute
only n values of µ(t). For each of these n values, according
to the formula (8), we must find the largest of n products.
Computing each product takes 1 elementary computational
step, computing the largest of n numbers requires that we
do n − 1 comparisons. So, the total number of computation
steps that needs to be done to compute one value of µ(t)
is 2n − 1 = O(n). Thus, to compute all n values of the
desired membership function µ(t), we need n ·O(n) = O(n2)
computational steps.

For large n, this number if large, so it is desirable to have
faster algorithms for computing this expression.

A faster algorithm for computing the expression (8): main
idea. Such faster algorithms are known. For example, an
algorithm described in [5], [6] is based on the well-known
fact that for non-negative numbers µ1, . . . , µn, we have

max(µ1, . . . , µn) = lim
p→∞

(|µ1|p + . . .+ |µn|p)1/p

(see, e.g., [4]). Therefore, for sufficiently large p, we have

max(µ1, . . . , µn) ≈ (|µ1|p + . . .+ |µn|p)1/p;

the larger p, the better the quality of this approximation.
Applying this approximate formula to the values µa(ta) ·

µb(t− ta) maximized in the formula (8), we come up with an
approximate formula µ(t) ≈ M(t)1/p, where we denoted

M(t) =
∑
ta

(µa(ta) · µb(t− ta))
p.

The formula for T (t) can be rewritten as:

M(t) =
∑
ta

(µa(ta))
p · µb(t− ta))

p.

In the natural assumption that the values ta are equally spaced,
with step h, this sum becomes a convolution of two functions:
Ma(x) = (µa(x))

p and Mb(x) = (µb(x))
p. Now, we can use

the following two ideas to compute M(x) fast:
• It is known that the Fourier transform of the convolution

Ma ∗ Mb of two functions Ma and Mb is equal to the
product of their Fourier transforms.

• Fourier transform can be computed in time O(n log(n))
[8], [9]; the corresponding algorithms are called Fast
Fourier Transform (FFT, for short).

In view of these two facts, we can use the following algorithm
to compute the membership function that expresses the sum
of two given fuzzy numbers:

Given: the values µa(ta) and µb(tb) for n equally spaced
values ta and tb.

Algorithm: First, we pick a large number p (the larger p,
the better the results of our computations). Then, we do the
following:

1) For each of n values ta, we compute the values
Ma(x) = (µa(x))

p and Mb(x) = (µb(x))
p.

2) We apply FFT to the functions Ma(x) and Mb(x) and
get their Fourier transforms M̂a(ω) and M̂b(ω) (for n
different values ω).

3) We multiply M̂a(ω) and M̂b(ω); let us denote the
corresponding product by M̂(ω).

4) We apply inverse Fast Fourier transform to the product
M̂(ω) (computed on the previous step). As a result, we
get a function M(x).

5) Finally, we reconstruct µ(t) as (M(t))1/p.

Number of computational steps. Let us estimate the number
of computational steps of this algorithm. Stages 1, 3, and 5
require linear time (O(n) steps each, so, O(n) total). Stages 2
and 4 involve FFT and therefore, require the time O(n log(n)).
Therefore, the total number of computational steps is equal to
O(n) + O(n log(n)) = O(n log(n)), which is much smaller
than the O(n2) time that is needed for straightforward com-
putations.

Comment. A similar algorithm can be applied for computing
the sum of more than two fuzzy numbers. Alternatively, we
can first use the above algorithm to add the first two of these
fuzzy numbers, then add the third one to the result, etc.

IV. RELATION BETWEEN ESTIMATING TIME COMPLEXITY
AND ZADEH’S EXTENSION PRINCIPLE: ANALYSIS AND

THE RESULTING ALGORITHM

What we want. We know that for the problem of computing
expression (8), there is an efficient algorithm which is faster
than a straightforward O(n2) algorithm. We would like to use
to use this algorithm to come up with a similar faster algorithm
for computing the desired expression (2).

Analysis of the problem. The main difference between the
desired formula (2) and the formula (8) that describes Zadeh’s
extension principle is that:

• the desired formula (2) uses addition, while
• the formula (8) corresponding to Zadeh’s extension prin-

ciple use multiplication.
Another difference is that:

• the desired formula (2) uses minimum, while
• the formula (8) corresponding to Zadeh’s extension prin-

ciple use maximum.
Thus, to reduce our problem to the problem of computing
Zadeh’s extension principle, we must reduce addition to mul-
tiplication, and minimum to maximum.

How to reduce addition to multiplication: reminder. It is
well known how to reduce addition to multiplication: use an
exponential function exp(k · x) since

exp(k · (a+ b)) = exp(k · a) · exp(k · b).

We want the resulting value exp(k ·x) to be from the interval
[0, 1] for all x > 0. Thus, we must select k < 0 – otherwise,
we will get values exp(k · x) > 1. The simplest such value is
k = −1.

The function exp(−x) is decreasing, so it automatically
reduced minimum to maximum.

Resulting reduction: idea. To compute the value (2), we
consider the functions µa(ta) = exp(−∆a(ta)), µb(tb) =
exp(−∆b(tb)), and µ(t) = exp(−∆c(t)).

By definition (2), ∆c(t) is the smallest of possible values
∆a(ta) + ∆b(t − ta) corresponding to all possible ta. Since
the function exp(−x) is decreasing, its values at the smallest
of the arguments is the largest, i.e.,

µ(t) = exp(−∆c(t)) = max
ta

exp(−(∆a(ta) + ∆b(t− ta)).

Here,
exp(−(∆a(ta) + ∆b(t− ta)) =

exp(−(∆a(ta)) · exp(−∆b(t− ta)) =

µa(ta) · µb(t− ta),

hence

µ(t) = exp(−∆c(t)) = max
ta

µa(ta) · µb(t− ta).

This is exactly the formula (8).
Once we know µ(t) = exp(−∆c(t)), we can reconstruct

∆c(t) as ∆c(t) = − ln(µ(t)).
Thus, we arrive at the following algorithm.

New algorithm for computing the expression (2). Once
we know the accuracy ∆a(ta) with which we can compute
a during time ta and the accuracy ∆b(tb) with which we can
compute b during time tb, to compute a similar characteristic
for c = a+ b, we do the following:

• form functions µa(ta) = exp(−∆a(ta)) and µb(tb) =
exp(−∆b(tb));

• apply a fast algorithm for computing the fuzzy expres-
sion (8) to these functions µa(ta) and µb(tb), and thus
compute a new function µ(t);

• compute ∆c(t) = − ln(µ(t)).

Discussion. The fact that we succeeded in relating computation
time restrictions and fuzziness is probably not accidental: as
noted in [1], [2], in critical situations time is too short to
perform exact computations, a good idea is to rely on (fuzzy)
expert intuition.

V. FROM ADDITION TO THE GENERAL CASE

Formulation of the problem. In the above text, we only
considered the simplest case of data processing, when we have
only two inputs a and b and we compute c = a + b. In the
general case, we may have several inputs a1, . . . , am, and we
compute a more general expression c = f(a1, . . . , am).

Analysis of the problem. Once we spend time ti on com-
puting each quantity ai, we thus get an approximate value
ãi with accuracy ∆i(ti). In other words, we know that the
approximation error ∆ai

def
= ãi − ai is bounded by the accu-

racy: |∆ai| ≤ ∆i(ti). Once we apply the algorithm f to the
estimates ãi, we get an approximate value c̃ = f(ã1, . . . , ãm).

What is the accuracy of this approximation, i.e., what is the
difference

∆c = c̃− c = f(ã1, . . . , ãm)− f(a1, . . . , am)

between this approximation and the actual (desired) value c?
Here, by definition of the approximation errors, we have ai =
ãi −∆ai, so

∆c = f(ã1, . . . , ãm)− f(ã1 −∆a1, . . . , ãm −∆am).

Since the approximations are reasonably accurate, we can
expand this expression in Taylor series in terms of ∆ai and
safely ignore terms which are quadratic and of higher order
in terms of ∆ai. As a result, we get the following expression:

∆c =
m∑
i=1

ci ·∆ai,

where
ci

def
=

∂f

∂ai
(ã1, . . . , ãm).

Since we know that |∆ai| ≤ ∆i(ti), we thus conclude that
|∆c| ≤ ∆, where

∆ =

m∑
i=1

|ci| ·∆i(ti).

Resulting expression. Thus, for a given time t, the best
accuracy ∆(t) that we can attain can be determined as

∆(t) = min
t1,...,tm: t1+...+tm=t

m∑
i=1

|ci| ·∆i(ti). (9)

Reduction to fuzzy computations: idea. The above formula
can be similarly reduced to computing the fuzzy expression

µ(t) = max
t1,...,tm: t1+...+tm=t

m∏
i=1

µi(ti), (10)

is we take µ(t) = exp(−∆(t)) and

µi(ti) = exp(−|ci| ·∆i(ti)).

Thus, we arrive at the following algorithm.

New algorithm for computing the expression (2). Once we
know, for every input i = 1, . . . ,m, the accuracy ∆i(ti) with
which we can compute ai during time ti, to compute a similar
characteristic for c = f(a1, . . . , an), we do the following:

• compute approximate values ã1, . . . , ãm;

• compute values ci =
∂f

∂ai
(ã1, . . . , ãm)

• form functions µi(ti) = exp(−|ci| ·∆i(ti));
• apply a fast algorithm for computing the fuzzy expression

(10) to these functions µi(ti), and thus compute a new
function µ(t);

• compute ∆c(t) = − ln(µ(t)).

Comment. For addition, we use membership functions
µi(ti) = exp(−∆i(ti)); in the more general case, we use more
complex membership functions µ′

i(ti) = exp(−|ci| ·∆i(ti)).
These new functions can be described in terms of the addition-
related functions µi(ti) as µ′

i(ti) = (µi(ti))
|ci|. It is worth

mentioning that an operation that transforms a degree µ into
a degree µ′ = µa is well known in fuzzy techniques: it is one
of the main methods of dealing with hedges. For example [3],
[7]:

• “very” is usually interpreted as a transformation µ → µ2

corresponding to a = 2, while
• “somewhat” is usually interpreted as a transformation

µ → √
µ corresponding to a = 1/2.

ACKNOWLEDGMENT

The authors are thankful to the anonymous referees for their
valuable suggestions.

REFERENCES

[1] T. Brown, Critical Care: A New Nurse Faces Death, Life and Everything
in Between, HarperStudio, New York, 2010.

[2] T. Brown, “Learning to Talk the Talk in a Hospital”, New York Times,
September 7, 2010, Science Times section.

[3] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions, Upper Saddle River, New Jersey: Prentice Hall, 1995.

[4] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover,
N.Y., 1975.

[5] O. Kosheleva, S. D. Cabrera, G. A. Gibson, and M. Koshelev, Fast
Implementations of Fuzzy Arithmetic Operations Using Fast Fourier
Transform (FFT), Proceedings of the 1996 IEEE International Conference
on Fuzzy Systems, New Orleans, September 8–11, 1996, Vol. 3, pp. 1958–
1964.

[6] O. Kosheleva, S. D. Cabrera, G. A. Gibson, and M. Koshelev, “Fast
Implementations of Fuzzy Arithmetic Operations Using Fast Fourier
Transform (FFT)”, Fuzzy Sets and Systems, 1997, Vol. 91, No. 2, pp. 269–
277.

[7] H. T. Nguyen and E. A. Walker, First Course on Fuzzy Logic, CRC Press,
Boca Raton, Florida, 2006.

[8] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
Prentice Hall, Englewood Cliffs, New Jersey, 2009.

[9] C. Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia, 1992.

