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Abstract: One of the main challenges in meteorology and environment
research is that in many important remote areas, sensor coverage
is sparse, leaving us with numerous blind spots. Placement and
maintenance of sensors in these areas are expensive. It is therefore
desirable to find out how, within a given budget, we can design a
sensor network that would provide us with the largest amount of useful
information while minimizing the size of the “blind spot” areas which
is not covered by the sensors.

This problem is very difficult even to formulate in precise terms
because of the huge uncertainty. There are two important aspects to
this problem: (1) how to best distribute the sensors over the large area,
i.e., how to best divide the area of interest into zones corresponding to
different sensors, and (2) what is the best location of each sensor in
the corresponding zone. There is some research on the first aspect to
the problem.

In this paper, we show that the second aspect can be naturally
formalized as a particular case of a general problem of scale-invariant
multi-criterion optimization under uncertainty, and we provide a
solution to this general problem. As an illustrative case study, we
consider the selection of locations for the Eddy towers, an important
micrometeorological instrument.
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1 Optimal Sensor Placement: Important Practical Problem

Additional sensors are needed. One of the main challenges in meteorology and
environment research is that in many important remote areas, sensor coverage is
sparse, leaving us with numerous blind spots; see, e.g., Kintisch (2009). Placement
and maintenance of sensors in these areas are expensive. It is therefore desirable
to find out how, within a given budget, we can design a sensor network that would
provide us with the largest amount of useful information while minimizing the size
of the “blind spot” areas which is not covered by the sensors.

Uncertainty. This problem is very difficult even to formulate in precise terms
because of the huge uncertainty.

Two aspects to the problem. There are two important aspects to this problem:

(1) how to best distribute the sensors over the large area, i.e., how to best divide
the area of interest into zones corresponding to different sensors, and

(2) what is the best location of each sensor in the corresponding zone.
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There are known methods for dealing with the first aspect to this problem; see,
e.g., Nguyen et al. (2008) and references therein.

Environment-related case study. We illustrate how to deal with the second
aspect to the problem on the example of optimal selection of locations for the Eddy
flux towers, an important micrometeorological instrument; see, e.g., Baldocci et al.
(1988); Lee at al. (2004); Burba and Anderson (2010).

In many applications involving meteorology and environmental sciences, it is
important to measure fluxes of heat, water, carbon dioxide, methane and other
trace gases that are exchanged within the atmospheric boundary layer. Air flow in
this boundary layer consists of numerous rotating eddies, i.e., turbulent vortices
of various sizes, with each eddy having horizontal and vertical components. To
estimate the flow amount at a given location, we thus need to accurately measure
wind speed (and direction), temperature, atmospheric pressure, gas concentration,
etc., at different heights, and then process the resulting data. To perform these
measurements, researchers build up vertical towers equipped with sensors at
different heights; these tower are called Eddy flux towers.

When selecting a location for the Eddy flux tower, we have several criteria to
satisfy; see, e.g., Baldocci et al. (1988); Lee at al. (2004); Jaimes (2008); Burba
and Anderson (2010).

• For example, the station should not be located too close to a road, so that
the gas flux generated by the cars does not influence our measurements of
atmospheric fluxes; in other words, the distance x1 to the road should be

larger than a certain threshold t1: x1 > t1, or y1
def
= x1 − t1 > 0.

• Also, the inclination x2 at the station location should be smaller than
a corresponding threshold t2, because otherwise, the flux will be mostly
determined by this inclination and will not be reflective of the atmospheric

processes: x2 < t2, or y2
def
= t2 − x2 > 0.

General case. In general, we have several such differences y1, . . . , yn all of which
have to be non-negative. For each of the differences yi, the larger its value, the
better.

Practical problem: reminder. We want to select the best location based on the
values of the differences y1, . . . , yn. For each of the differences yi, the larger its
value, the better.

Multi-criteria optimization: a natural formalization of the optimal sensor
placement problem. Based on the above, our problem is a typical setting for
multi-criteria optimization; see, e.g., Sawaragi et al. (1985); Steuer (1986); Ehrgott
and Gandibleux (2002).

2 Weighted Average: A Natural Approach for Solving Multi-
Criterion Optimization Problems, and Limitations of This
Approach

Weighted average. The most widely used approach to multi-criteria optimization
is weighted average, where we assign weights w1, . . . , wn > 0 to different criteria
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yi and select an alternative for which the weighted average w1 · y1 + . . .+ wn · yn
attains the largest possible value.

This approach has been used in many practical problems ranging from selecting
the lunar landing sites for the Apollo missions (see, e.g., Binder and Roberts
(1970)) to selecting landfill sites (see, e.g., Fountoulis et al. (2003)).

Additional requirement. In our problem, we have an additional requirement –
that all the values yi must be positive. Thus, we must only compare solutions with
yi > 0 when selecting an alternative with the largest possible value of the weighted
average.

Limitations of the weighted average approach. In general, the weighted
average approach often leads to reasonable solutions of the multi-criteria
optimization problem. However, as we will show, in the presence of the additional
positivity requirement, the weighted average approach is not fully satisfactory.

A practical multi-criteria optimization must take into account that
measurements are not absolutely accurate. In many practical application of
the multi-criterion optimization problem (in particular, in applications to optimal
sensor placement), the values yi come from measurements, and measurements are
never absolutely accurate. The results ỹi of the measurements are close to the
actual (unknown) values yi of the measured quantities, but they are not exactly
equal to these values. If:

• we measure the values yi with higher and higher accuracy and,

• based on the measurement results ỹi, we conclude that the alternative y =
(y1, . . . , yn) is better than some other alternative y′ = (y′1, . . . , y

′
n),

then we expect that the actual alternative y is indeed either better than y′ or at
least of the same quality as y′. Otherwise, if we do not make this assumption,
we will not be able to make any meaningful conclusions based on real-life
(approximate) measurements.

The above natural requirement is not always satisfied for weighted
average. Let us show that for the weighted average, this “continuity” requirement
is not satisfied even in the simplest case when we have only two criteria y1 and y2.
Indeed, let w1 > 0 and w2 > 0 be the weights corresponding to these two criteria.
Then, the resulting strict preference relation ≻ has the following properties:

• if y1 > 0, y2 > 0, y′1 > 0, and y′2 > 0, and w1 · y′1 + w2 · y′2 > w1 · y1 + w2 · y2,
then

y′ = (y′1, y
′
2) ≻ y = (y1, y2); (1)

• if y1 > 0, y2 > 0, and at least one of the values y′1 and y′2 is non-positive,
then

y = (y1, y2) ≻ y′ = (y′1, y
′
2). (2)
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Let us consider, for every ε > 0, the tuple y′(ε)
def
=

(
ε, 1 +

w1

w2

)
, with y′1(ε) = ε and

y′2(ε) = 1 +
w1

w2
, and also the comparison tuple y = (1, 1). In this case, for every

ε > 0, we have

w1 · y′1(ε) + w2 · y′2(ε) = w1 · ε+ w2 + w2 ·
w1

w2
= w1 · (1 + ε) + w2 (3)

and

w1 · y1 + w2 · y2 = w1 + w2, (4)

hence y′(ε) ≻ y. However, in the limit ε → 0, we have y′(0) =

(
0, 1 +

w1

w2

)
, with

y′1(0) = 0 and thus, y′(0) ≺ y.

3 Towards a More Adequate Approach to Multi-Criterion
Optimization

What we want: a precise description. We want to be able to compare different
alternatives.

Each alternative is characterized by a tuple of n values y = (y1, . . . , yn), and
only alternatives for which all the values yi are positive are allowed. Thus, from
the mathematical viewpoint, the set of all alternatives is the set (R+)n of all the
tuples of positive numbers.

For each two alternatives y and y′, we want to tell whether y is better than
y′ (we will denote it by y ≻ y′ or y′ ≺ y), or y′ is better than y (y′ ≻ y), or y
and y′ are equally good (y′ ∼ y). These relations must satisfy natural properties.
For example, if y is better than y′ and y′ is better than y′′, then y is better than
y′′. In other words, the relation ≻ must be transitive. Similarly, the relation ∼
must be transitive, symmetric, and reflexive (y ∼ y), i.e., in mathematical terms,
an equivalence relation.

So, we want to define a pair of relations ≻ and ∼ such that ≻ is transitive, ∼ is
an equivalence relation, and for every y and y′, one and only one of the following
relations hold: y ≻ y′, y′ ≻ y, or y ∼ y′.

It is also reasonable to require that if each criterion is better, then the
alternative is better as well, i.e., that if yi > y′i for all i, then y ≻ y′.

Comment. Pairs of relations of the above type can be alternatively characterized
by a pre-ordering relation

y′ ≽ y ⇔ (y′ ≻ y ∨ y′ ∼ y). (5)

This pre-ordering relation must be transitive and – in our case – total (i.e., for
every y and y′, we have y ≽ y′ ∨ y′ ≽ y). Once we know the pre-ordering relation
≽, we can reconstruct ≻ and ∼ as follows:

y′ ≻ y ⇔ (y′ ≽ y& y ̸≽ y′); (6)
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y′ ∼ y ⇔ (y′ ≽ y& y ≽ y′). (7)

Scale invariance: motivation. In general, the quantities yi describe completely
different physical notions, measured in completely different units. In our
meteorological case, some of these values are wind velocities measured in meters
per second, or in kilometers per hour, or in miles per hour. Other values are
elevations described in meters, in kilometers, or in feet, etc. Each of these
quantities can be described in many different units. A priori, we do not know
which units match each other, so it is reasonable to assume that the units used for
measuring different quantities may not be exactly matched.

It is therefore reasonable to require that the relations ≻ and ∼ between the
two alternatives y = (y1, . . . , yn) and y′ = (y′1, . . . , y

′
n) do not change if we simply

change the units in which we measure each of the corresponding n quantities.

Comment. The importance of such invariance is well known in measurements
theory, starting with the pioneering work of S. S. Stevens (Stevens (1946)); see also
the classical books Pfanzangl (1968) and Luce et al. (1990) (especially Chapter 22),
where this invariance is also called meaningfulness.

Scale invariance: towards a precise description. When we replace a unit in
which we measure a certain quantity q by a new measuring unit which is λ > 0
times smaller, then the numerical values of this quantity increase by a factor of λ,
i.e., q → λ · q. For example, 1 cm is λ = 100 times smaller than 1 m, so the length
q = 2 m, when measured in cm, becomes λ · q = 2 · 100 = 200 cm.

Let λi denote the ratio of the old to the new units corresponding to the i-th
quantity. Then, the quantity that had the value yi in the old units will be described
by a numerical value λi · yi in the new units. Therefore, scale-invariance means
that for all y, y′ ∈ (R+)n and for all λi > 0, we have

y′ = (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) ⇒ (λ1 · y′1, . . . , λn · y′n) ≻ (λ1 · y1, . . . , λn · yn)

and

y′ = (y′1, . . . , y
′
n) ∼ y = (y1, . . . , yn) ⇒ (λ1 · y′1, . . . , λn · y′n) ∼ (λ1 · y1, . . . , λn · yn).

Comment. In general, in measurements, in addition to changing the unit, we can
also change the starting point. However, for the differences yi, the starting point
is fixed by the fact that 0 corresponds to the threshold value. So, in our case, only
changing a measuring unit (= scaling) makes sense.

Continuity. As we have mentioned in the previous section, we also want to require
that the relations ≻ and ∼ are continuous in the following sense: if y′(ε) ≽ y(ε)
for every ε, then in the limit, when y′(ε) → y′(0) and y(ε) → y(0) (in the sense of
normal convergence in Rn), we should have y′(0) ≽ y(0).

Let us now describe our requirements in precise terms.

Definition 1. By a total pre-ordering relation on a set Y , we mean a pair of a
transitive relation ≻ and an equivalence relation ∼ for which, for every y, y′ ∈ Y ,
one and only one of the following relations hold: y ≻ y′, y′ ≻ y, or y ∼ y′.
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Comment. We will denote y ≽ y′
def
= (y ≻ y′ ∨ y ∼ y′).

Definition 2. We say that a total pre-ordering is non-trivial if there exist y and y′

for which y′ ≻ y.

Comment. This definition excludes the trivial pre-ordering in which every two
tuples are equivalent to each other.

Definition 3. We say that a total pre-ordering relation on the set (R+)n is:

• monotonic if y′i > yi for all i implies y′ ≻ y;

• scale-invariant if for all λi > 0:

• (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) implies

(λ1 · y′1, . . . , λn · y′n) ≻ (λ1 · y1, . . . , λn · yn), (8)

and

• (y′1, . . . , y
′
n) ∼ y = (y1, . . . , yn) implies

(λ1 · y′1, . . . , λn · y′n) ∼ (λ1 · y1, . . . , λn · yn). (9)

• continuous if whenever we have a sequence y(k) of tuples for which y(k) ≽ y′

for some tuple y′, and the sequence y(k) tends to a limit y, then y ≽ y′.

Theorem. Every non-trivial monotonic scale-invariant continuous total pre-
ordering relation on (R+)n has the following form:

y′ = (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) ⇔

n∏
i=1

(y′i)
αi >

n∏
i=1

yαi
i ; (10)

y′ = (y′1, . . . , y
′
n) ∼ y = (y1, . . . , yn) ⇔

n∏
i=1

(y′i)
αi =

n∏
i=1

yαi
i , (11)

for some constants αi > 0.

Comment. In other words, for every non-trivial monotonic scale-invariant
continuous total pre-ordering relation on (R+)n, there exist values α1 > 0, . . . ,
αn > 0 for which the above equivalence hold. Vice versa, for each set of values
α1 > 0, . . . , αn > 0, the above formulas define a monotonic scale-invariant
continuous pre-ordering relation on (R+)n.

It is worth mentioning that the resulting relation coincides with the asymmetric
version (see, e.g., Roth (1979)) of the bargaining solution proposed by the Nobelist
John Nash in 1953; see Nash (1953).

Application. We have applied this approach to selecting a site for the Eddy
tower that we built at Jornada Experimental Range, a study site in the northern
Chihuahuan Desert; see, e.g., Jaimes et al. (2010, 2011). In this applications,
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the parameters yi have already been identified in the previous research; see, e.g.,
Baldocci et al. (1988); Lee at al. (2004); Burba and Anderson (2010).

The values αi were selected based on the information provided by experts, who
supplied us with pairs of (approximately) equally good (or equally bad) designs y
and y′ with different combinations of the parameters yi. Each resulting resulting

condition
n∏

i=1

yαi
i =

n∏
i=1

(y′i)
αi can be equivalently described, after taking logarithms

of both sides, as a linear equation
n∑

i=1

αi · ln(yi) =
n∑

i=1

αi · ln(y′i). By solving this

system of linear equations, we found the values αi that reflect the expert opinion
on the efficiency of Eddy towers.

Comment. The above equations determine αi modulo a multiplicative constant: if
we multiply all the values αi by the same constant, the equations remain valid. To
avoid this non-uniqueness, we used normalized values of αi, i.e., values that satisfy

the additional normalizing equation
n∑

i=1

αi = 1.

4 Proof

1◦. Due to scale-invariance (9), for every y1, . . . , yn, y
′
1, . . . , y

′
n, we can take λi =

1

yi
and conclude that

(y′1, . . . , y
′
n) ∼ (y1, . . . , yn) ⇔

(
y′1
y1

, . . . ,
y′n
yn

)
∼ (1, . . . , 1). (12)

Thus, to describe the equivalence relation ∼, it is sufficient to describe the set of
all the vectors z = (z1, . . . , zn) for which z ∼ (1, . . . , 1). Similarly,

(y′1, . . . , y
′
n) ≻ (y1, . . . , yn) ⇔

(
y′1
y1

, . . . ,
y′n
yn

)
≻ (1, . . . , 1). (13)

So, to describe the ordering relation ≻, it is sufficient to describe the set of all the
vectors z = (z1, . . . , zn) for which z ≻ (1, . . . , 1).

Alternatively, we can take λi =
1

y′i
and conclude that

(y′1, . . . , y
′
n) ≻ (y1, . . . , yn) ⇔ (1, . . . , 1) ≻

(
y1
y′1

, . . . ,
yn
y′n

)
. (14)

Thus, it is also sufficient to describe the set of all the vectors z = (z1, . . . , zn) for
which (1, . . . , 1) ≻ z.

2◦. The above equivalence involves division. To simplify the description, we
can take into account that in the logarithmic space, division becomes a simple

difference: ln

(
y′i
yi

)
= ln(y′i)− ln(yi). To use this simplification, let us consider the

logarithms Yi
def
= ln(yi) of different values. In terms of these logarithms, the original

values can be reconstructed as yi = exp(Yi). In terms of these logarithms, we thus
need to consider:
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• the set S∼ of all the tuples Z = (Z1, . . . , Zn) for which

z = (exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1), (15)

and

• the set S≻ of all the tuples Z = (Z1, . . . , Zn) for which

z = (exp(Z1), . . . , exp(Zn)) ≻ (1, . . . , 1). (16)

We will also consider the set S≺ of all the tuples Z = (Z1, . . . , Zn) for which

(1, . . . , 1) ≻ z = (exp(Z1), . . . , exp(Zn)). (17)

Since the pre-ordering relation is total, for every tuple z,

• either z ∼ (1, . . . , 1),

• or z ≻ (1, . . . , 1),

• or (1, . . . , 1) ≻ z.

In particular, this is true for z = (exp(Z1), . . . , exp(Zn)). Thus, for every tuple Z,
either Z ∈ S∼ or Z ∈ S≻ or Z ∈ S≺.

3◦. Let us prove that the set S∼ is closed under addition, i.e., that if the tuples Z =
(Z1, . . . , Zn) and Z ′ = (Z ′

1, . . . , Z
′
n) belong to the set S∼, then their component-

wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (18)

also belongs to the set S∼.

Indeed, by definition (15) of the set S∼, the condition Z ∈ S∼ means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (19)

Using scale-invariance (9) with λi = exp(Z ′
i), we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ∼ (exp(Z ′
1), . . . , exp(Z

′
n)). (20)

On the other hand, the condition Z ′ ∈ S∼ means that

(exp(Z ′
1), . . . , exp(Z

′
n)) ∼ (1, . . . , 1). (21)

Thus, due to transitivity of the equivalence relation ∼, we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ∼ (1, . . . , 1). (22)

Since for every i, we have exp(Zi) · exp(Z ′
i) = exp(Zi + Z ′

i), we thus conclude that

(exp(Z1 + Z ′
1), . . . , exp(Zn + Z ′

n)) ∼ (1, . . . , 1). (23)
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By definition (15) of the set S∼, this means that the tuple Z + Z ′ belongs to the
set S∼.

4◦. Similarly, we can prove that the set S≻ is closed under addition, i.e., that if
the tuples Z = (Z1, . . . , Zn) and Z ′ = (Z ′

1, . . . , Z
′
n) belong to the set S≻, then their

component-wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (24)

also belongs to the set S≻.

Indeed, by definition (16) of the set S≻, the condition Z ∈ S≻ means that

(exp(Z1), . . . , exp(Zn)) ≻ (1, . . . , 1). (25)

Using scale-invariance (8) with λi = exp(Z ′
i), we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ≻ (exp(Z ′
1), . . . , exp(Z

′
n)). (26)

On the other hand, the condition Z ′ ∈ S≻ means that

(exp(Z ′
1), . . . , exp(Z

′
n)) ≻ (1, . . . , 1). (27)

Thus, due to transitivity of the strict preference relation ≻, we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ≻ (1, . . . , 1). (28)

Since for every i, we have exp(Zi) · exp(Z ′
i) = exp(Zi + Z ′

i), we thus conclude that

(exp(Z1 + Z ′
1), . . . , exp(Zn + Z ′

n)) ≻ (1, . . . , 1). (29)

By definition (16) of the set S≻, this means that the tuple Z + Z ′ belongs to the
set S≻.

5◦. A similar argument shows that the set S≺ is closed under addition, i.e., that
if the tuples Z = (Z1, . . . , Zn) and Z ′ = (Z ′

1, . . . , Z
′
n) belong to the set S≺, then

their component-wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (30)

also belongs to the set S≺.

6◦. Let us now prove that the set S∼ is closed under the “unary minus”

operation, i.e., that if Z = (Z1, . . . , Zn) ∈ S∼, then −Z
def
= (−Z1, . . . ,−Zn) also

belongs to S∼.

Indeed, Z ∈ S∼ means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (31)
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Using scale-invariance (9) with λi = exp(−Zi) =
1

exp(Zi)
, we conclude that

(1, . . . , 1) ∼ (exp(−Z1), . . . , exp(−Zn)), (32)

i.e., that −Z ∈ S∼.

7◦. Let us prove that if Z = (Z1, . . . , Zn) ∈ S≻, then −Z
def
= (−Z1, . . . ,−Zn)

belongs to S≺.

Indeed, Z ∈ S≻ means that

(exp(Z1), . . . , exp(Zn)) ≻ (1, . . . , 1). (33)

Using scale-invariance (8) with λi = exp(−Zi) =
1

exp(Zi)
, we conclude that

1, . . . , 1) ≻ (exp(−Z1), . . . , exp(−Zn)), (34)

i.e., that −Z ∈ S≺.
Similarly, we can show that if Z ∈ S≺, then −Z ∈ S≻.

8◦. From Part 3 of this proof, it now follows that if Z = (Z1, . . . , Zn) ∈ S∼, then
Z + Z ∈ S∼, then that Z + (Z + Z) ∈ S∼, etc., i.e., that for every positive integer
p, the tuple

p · Z = (p · Z1, . . . , p · Zn) (35)

also belongs to the set S∼.
By using Part 6 of this proof, we can also conclude that this is true for negative

integers p as well. Finally, by taking into account that the zero tuple 0
def
= (0, . . . , 0)

can be represented as Z + (−Z), we conclude that 0 · Z = 0 also belongs to the
set S∼.

Thus, if a tuple Z belongs to the set S∼, then for every integer p, the tuple
p · Z also belongs to the set S∼.

9◦. Similarly, from Parts 4 and 5 of this proof, it follows that

• if Z = (Z1, . . . , Zn) ∈ S≻, then for every positive integer p, the tuple p · Z
also belongs to the set S≻, and

• if Z = (Z1, . . . , Zn) ∈ S≺, then for every positive integer p, the tuple p · Z
also belongs to the set S≺.

10◦. Let us prove that for every rational number r =
p

q
, where p is an integer and

q is a positive integer, if a tuple Z belongs to the set S∼, then the tuple r · Z also
belongs to the set S∼.

Indeed, according to Part 8, Z ∈ S∼ implies that p · Z ∈ S∼.
According to Part 2, for the tuple r · Z, we have either r · Z ∈ S∼, or r · Z ∈

S≻, or r · Z ∈ S≺.
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• If r · Z ∈ S≻, then, by Part 9, we would get p · Z = q · (r · Z) ∈ S≻, which
contradicts our result that p · Z ∈ S∼.

• Similarly, if r · Z ∈ S≺, then, by Part 9, we would get p · Z = q · (r · Z) ∈ S≺,
which contradicts our result that p · Z ∈ S∼.

Thus, the only remaining option is r · Z ∈ S∼. The statement is proven.

11◦. Let us now use continuity to prove that for every real number x, if a tuple Z
belongs to the set S∼, then the tuple x · Z also belongs to the set S∼.

Indeed, a real number x can be represented as a limit of rational numbers:
r(k) → x. According to Part 10, for every k, we have r(k) · Z ∈ S∼, i.e., the tuple

Z(k) def
= (exp(r(k) · Z1), . . . , exp(r

(k) · Zn)) ∼ (1, . . . , 1). (36)

In particular, this means that Z(k) ≽ (1, . . . , 1). In the limit,

Z(k) → (exp(x · Z1), . . . , exp(x · Zn)) ≽ (1, . . . , 1). (37)

By definition of the sets S∼ and S≻, this means that x · Z ∈ S∼ or x · Z ∈ S≻.
Similarly, for −(x · Z) = (−x) · Z, we conclude that −x · Z ∈ S∼ or

(−x) · Z ∈ S≻. (38)

If we had x · Z ∈ S≻, then by Part 7 we would get (−x) · Z ∈ S≺, a contradiction.
Thus, the case x · Z ∈ S≻ is impossible, and we have x · Z ∈ S∼. The statement is
proven.

12◦. According to Parts 3 and 11, the set S∼ is closed under addition and under
multiplication by an arbitrary real number. Thus, if tuples Z, . . . , Z ′ belong to the
set S∼, their arbitrary linear combination x · Z + . . .+ x′ · Z ′ also belongs to the
set S∼. So, the set S∼ is a linear subspace of the n-dimensional space of all the
tuples.

13◦. The subspace S∼ cannot coincide with the entire n-dimensional space, because
then the pre-ordering relation would be trivial. Thus, the dimension of this
subspace must be less than or equal to n− 1. Let us show that the dimension of
this subspace is n− 1.

Indeed, let us assume that the dimension is smaller than n− 1. Since the pre-
ordering is non-trivial, there exist tuples y = (y1, . . . , yn) and y′ = (y′1, . . . , y

′
n) for

which y ≻ y′ and thus, Z = (Z1, . . . , Zn) ∈ S≻, where Zi = ln

(
yi
y′i

)
. From Z ∈ S≻,

we conclude that −Z ∈ S≺.
Since the linear space S∼ is a less than (n− 1)-dimensional subspace of an n-

dimensional linear space, there is a path connecting Z ∈ S≻ and −Z ∈ S≺ which
avoids S∼. In mathematical terms, this path is a continuous mapping γ : [0, 1] →
Rn for which γ(0) = Z and γ(1) = −Z. Since this path avoids S∼, every point γ(t)
on this path belongs either to S≻ or to S≺.

Let t denote the supremum (least upper bound) of the set of all the values t for
which γ(t) ∈ S≻. By definition of the supremum, there exists a sequence t(k) → t
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for which γ
(
t(k)

)
∈ S≻. Similarly to Part 11, we can use continuity to prove that

in the limit, γ
(
t
)
∈ S≻ or γ

(
t
)
∈ S∼. Since the path avoids the set S∼, we thus

get γ
(
t
)
∈ S≻.

Similarly, since γ(1) ̸∈ S≻, there exists a sequence t(k) ↓ t for which γ
(
t(k)

)
∈

S≺. We can therefore conclude that in the limit, γ
(
t
)
∈ S≻ or γ(t) ∈ S∼ – a

contradiction with our previous conclusion that γ
(
t
)
∈ S≻.

This contradiction shows that the linear space S∼ cannot have dimension
smaller than n− 1 and thus, that this space have dimension n− 1.

14◦. Every (n− 1)-dimensional linear subspace of an n-dimensional superspace
separates the superspace into two half-spaces. Let us show that one of these half-
spaces is S≻ and the other is S≺.

Indeed, if one of the subspaces contains two tuples Z and Z ′ for which Z ∈ S≻
and Z ′ ∈ S≺, then the line segment γ(t) = t · Z + (1− t) · Z ′ containing these two
points also belongs to the same subspace, i.e., avoids the set S∼. Thus, similarly
to Part 13, we would get a contradiction.

So, if one point from a half-space belongs to S≻, all other points from this
subspace also belong to the set S≻. Similarly, if one point from a half-space belongs
to S≺, all other points from this subspace also belong to the set S≺.

15◦. Every (n− 1)-dimensional linear subspace of an n-dimensional space has the
form

α1 · Z1 + . . .+ αn · Zn = 0 (39)

for some real values αi, and the corresponding half-spaces have the form

α1 · Z1 + . . .+ αn · Zn > 0 (40)

and

α1 · Z1 + . . .+ αn · Zn < 0. (41)

The set S≻ coincides with one of these subspaces. If it coincides with the set
of all tuples Z for which α1 · Z1 + . . .+ αn · Zn < 0, then we can rewrite it as

(−α1) · Z1 + . . .+ (−αn) · Zn > 0, (42)

i.e., as α′
1 · Z1 + . . .+ α′

n · Zn > 0 for α′
i = −αi.

Thus, without losing generality, we can conclude that the set S≻ coincides with
the set of all the tuples Z for which α1 · Z1 + . . .+ αn · Zn > 0. We have mentioned
that

y′ = (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) ⇔ (Z1, . . . , Zn) ∈ S≻, (43)

where Zi = ln

(
y′i
yi

)
. So,

y′ ≻ y ⇔
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α1 · Z1 + . . .+ αn · Zn = α1 · ln
(
y′1
y1

)
+ . . .+ αn · ln

(
y′n
yn

)
> 0. (44)

Since ln

(
y′i
yi

)
= ln(y′i)− ln(yi), the last inequality in the formula (44) is equivalent

to

α1 · ln(y′1) + . . .+ αn · ln(y′n) > α1 · ln(y1) + . . .+ αn · ln(yn). (45)

Let us take exp of both sides of the formula (45); then, due to the monotonicity
of the exponential function, we get an equivalent inequality

exp(α1 · ln(y′1) + . . .+ αn · ln(y′n)) > exp(α1 · ln(y1) + . . .+ αn · ln(yn)). (46)

Here,

exp(α1 · ln(y′1) + . . .+ αn · ln(y′n)) = exp(α1 · ln(y′1)) · . . . · exp(αn · ln(y′n)),

where for every i, eαi·zi = (ezi)
αi , with zi

def
= ln(y′i), implies that

exp(αi · ln(y′i)) = (exp(ln(y′i)))
αi = (y′i)

αi , (47)

so

exp(α1 · ln(y′1) + . . .+ αn · ln(y′n)) = (y′1)
α1 · . . . · (y′n)αn (48)

and similarly,

exp(α1 · ln(y1) + . . .+ αn · ln(yn)) = yα1
1 · . . . · yαn

n . (49)

Thus, due to (44), (45), (46), (48), and (49), the condition y′ ≻ y is equivalent to:

n∏
i=1

yαi
i >

n∏
i=1

(y′i)
αi . (50)

Similarly, we prove that

(y1, . . . , yn) ∼ y′ = (y′1, . . . , y
′
n) ⇔

n∏
i=1

yαi
i =

n∏
i=1

(y′i)
αi . (51)

The condition αi > 0 follows from our assumption that the pre-ordering is
monotonic.

The theorem is proven.
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5 Conclusion

In many practical applications, we need to perform multi-criterion optimization.
Specifically, each alternative is characterized by the values of several criteria y1,
. . . , yn; for each of these criteria, the larger the value yi, the better, and it is
important that all the values yi are positive. To make a decision, we need to
develop a preference relation y ≽ y′ that would enable us to compare the overall
quality of different alternatives y = (y1, . . . , yn) and y′ = (y′1, . . . , y

′
n). In general,

different criteria correspond to different quantities. The numerical value of each
criterion yi depends on the choice of a measuring unit for the corresponding
quantity: if we replace the original unit by a new unit which is λi times smaller,
then, instead of the original values yi and y′i, we get new values λi · yi and λi ·
y′i. It is reasonable to require that the relative quality of two alternatives does
not change if we simply change the measuring units for measuring the values of
the corresponding criteria; in other words, it is reasonable to require that the
preference relation is scale-invariant.

In this paper, we show that the most widely used approach to solving multi-
criterion optimization problems – weighted average – is not scale-invariant. We
also show that the only scale-invariant preference relation is the one based on

comparing the values
n∏

i=1

yαi
i for some αi > 0. As a case study, we have applied this

preference relation to the problem of selecting the optimal location of an Eddy flux
tower, a vertical tower with meteorological and environmental sensors at different
height which is a crucial instrument in measuring the flux of heat and different
gases within the atmospheric boundary layer. The resulting tower is now fully
operational Jornada Experimental Range, a study site in the northern Chihuahuan
Desert.
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