
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

1-2015

Optimizing pred(25) Is NP-Hard
Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Olga Kosheleva
University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Engineering Commons, and the Software Engineering Commons
Comments:
Technical Report: UTEP-CS-15-06

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Ceberio, Martine; Kosheleva, Olga; and Kreinovich, Vladik, "Optimizing pred(25) Is NP-Hard" (2015). Departmental Technical
Reports (CS). Paper 895.
http://digitalcommons.utep.edu/cs_techrep/895

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/895?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Optimizing pred(25) Is NP-Hard

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, TX 79968, USA
{mceberio,olgak,vladik}@utep.edu

Abstract. Usually, in data processing, to find the parameters of the
models that best fits the data, people use the Least Squares method.
One of the advantages of this method is that for linear models, it leads
to an easy-to-solve system of linear equations. A limitation of this method
is that even a single outlier can ruin the corresponding estimates; thus,
more robust methods are needed. In particular, in software engineering,
often, a more robust pred(25) method is used, in which we maximize the
number of cases in which the model’s prediction is within the 25% range
of the observations. In this paper, we show that even for linear models,
pred(25) parameter estimation is NP-hard.

1 Formulation of the Problem

Need to estimate parameters of models. In many practical situations, we
know that a quantity y depends on the quantities x1, . . . , xn, and we know the
general type of this dependence. In precise terms, this means that we know a
family of functions f(c1, . . . , cp, x1, . . . , xn) characterized by parameters ci, and
we know that the actual dependence corresponds to one of these functions.

For example, we may know that the dependence is linear; in this cases, the
corresponding family takes the form

f(c1, . . . , cn, cn+1, x1, . . . , xn) = cn+1 +
n∑

i=1

ci · xi.

In general, we know the type of the dependence, but we do not know
the actual values of the parameters. These values can only be determined
from the measurements and observations, when we observe the values xj and
the corresponding value y. Measurement and observations are always approx-
imate, so we end up with tuples (x1k, . . . , xnk, yk), 1 ≤ k ≤ K, for which
yk ≈ f(c1, . . . , cp, x1k, . . . , xnk) for all k. We need to estimate the parameters
c1, . . . , cp based on these measurement results.

Least Squares: traditional way of estimating parameters of models.
In most practical situations, the Least Squares method is used to estimate the
desired parameters. In this method, we select the values ci for which the sum of
the squares of the approximation errors is the smallest possible:∑

k

(yk − f(c1, . . . , cp, x1k, . . . , xnk))
2 → min

c1,...,cp
.

One of advantages of this approach is that, when the model
f(c1, . . . , cp, x1, . . . , xn) linearly depends on the parameters ci, the sum of squares
is a quadratic function of ci. Thus, when we apply the usual criterion for the
minimum – differentiate the sum with respect to each variable xi and equate all
the resulting partial derivatives to 0 – we get a system of linear equations, from
which we can easily find all the unknown c1, . . . , cp.

Least Squares is not always the optimal way of estimating the param-
eters. The Least Squares approach known to be optimal for the case when all
the approximation errors yk−f(c1, . . . , cp, x1k, . . . , xnk) are independent and all
distributed according to the same normal distribution. In practice, however, we
often have outliers – e.g., values corresponding to the malfunction of a measur-
ing instrument – and in the presence of even a single outlier, the Least Squares
method can give very wrong results.

Let us illustrate this on the simplified example, when y does not depend
on any variables xi at all, i.e., when y = c for some unknown constant c. In
this case, we need to estimate the value c based on the observations y1, . . . , yK .

For this problem, the Least Squares method takes the form
K∑

k=1

(yk − c)2 →

min. Differentiating the sum with respect to the unknown c and equating the

derivative to 0, we conclude that c =
y1 + . . .+ yK

K
.

This formula works well if all the values yi are approximately equal to c. For
example, if the actual value of c is 0, and |yi| ≤ 0.1, we get an estimate |c| ≤ 0.1.
However, if out of 100 measurements yi, one of an outlier equal to 1000, the
estimate becomes close to 10 – and thus, far away from the actual value 0.

To take care of such situations, we need estimates which do not change as
much in the presence of possible outliers. Such methods are called robust [2].

pred(25) as an example of a robust estimate. One of the possible robust
estimates consists of selecting a percentage α and selecting the values of the pa-
rameters for which the number of observations for which the prediction is within
α% from the observed value is the largest possible. In other words, each predic-
tion is formulated as a constraint, and we look for parameters that maximize
the number of satisfied constraint. This technique is known as pred(α).

This method is especially widely used in software engineering, e.g., for esti-
mating how well different models can predict the overall software effort and/or
the number of bugs. In software engineering, this method is most frequently
applied as pred(25), for α = 25; see, e.g., [1, 3].

Problem. In contrast to the Least Squares approach, for which the usual cal-
culus ideas lead to an efficient optimization algorithm, no such easy solution is
known for pred(25) estimates; all known algorithms for this estimation are rather
time-consuming. A natural question arises: is this because we have not yet found
a feasible algorithm for computing these estimates, or is this estimation problem
really hard?

What we prove in this paper. In this paper, we prove that even for a linear
model with no free term cn+1, pred(25) estimation – as well as pred(α) estimation

for any α > 0 – is an NP-hard problem. In plain terms, this means that this
problem is indeed inherently hard.

2 Main Result and Its Proof

Definition 1. Let α ∈ (0, 1) be a rational number. By a linear pred(α)-
estimation problem, we means the following problem:

– Given: an integer n, K rational-valued tuples (x1k, . . . , xnk, yk), 1 ≤ k ≤ K,
and an integer M < K;

– Check: whether there exist parameters c1, . . . , cn for which in at least M
cases k, we have ∣∣∣∣∣yk −

n∑
i=1

ci · xik

∣∣∣∣∣ ≤ α ·

∣∣∣∣∣
n∑

i=1

ci · xik

∣∣∣∣∣ .
Proposition 1. For every α, the linear pred(α)-estimation problem is NP-hard.

Proof. To prove this result, we will reduce, to this problem, a known NP-
hard problem of checking whether a set of integer weights s1, . . . , sm can be
divided into two parts of equal overall weight, i.e., whether there exist integers

yj ∈ {−1, 1} for which
m∑
j=1

yj · sj = 0; see, e.g., [4].

In the reduced problem, we will have n = m + 1, with n = m + 1 unknown
coefficients c1, . . . , cm, cm+1. The parameters ci will correspond to the values yi,
and cm+1 is equal to 1. We will build tuples corresponding to equations yi = 1

and yi = −1 for i ≤ m, to cm+1 = 1, and to the equation cm+1 +
m∑
i=1

yi · si = 1.

To each equation of the type yi = 1 or cm+1 = 1, we put into correspondence
the following two tuples:

– In the first tuple, xik = 1 + ε, xjk = 0 for all j ̸= i, and yk = 1. The
resulting linear term has the form ci · (1 + ε) and thus, the corresponding
inequality takes the form 1 − ε ≤ (1 + ε) · ci ≤ 1 + ε, i.e., equivalently, the

form
1− ε

1 + ε
≤ ci ≤ 1.

– In the second tuple, xik = 1 − ε, xjk = 0 for all j ̸= i, and yk = 1. The
resulting linear term has the form ci · (1 − ε) and thus, the corresponding
inequality takes the form 1 − ε ≤ (1 − ε) · ci ≤ 1 + ε, i.e., equivalently, the

form 1 ≤ ci ≤
1 + ε

1− ε
.

It should be mentioned that the only value ci that satisfies both inequalities is
the value ci = 1.

Similarly, to each equation of the type yi = −1, we put into correspondence
following two tuples.

– In the first tuple, xik = 1 + ε, xjk = 0 for all j ̸= i, and yk = −1. The
resulting linear term has the form ci · (1 + ε) and thus, the corresponding
inequality takes the form −1 − ε ≤ (1 + ε) · ci ≤ −1 − ε, i.e., equivalently,

the form −1 ≤ ci ≤ −1− ε

1 + ε
.

– In the second tuple, xik = 1 − ε, xjk = 0 for all j ̸= i, and yk = −1. The
resulting linear term has the form ci · (1 − ε) and thus, the corresponding
inequality takes the form −1 − ε ≤ (1 − ε) · ci ≤ −1 + ε, i.e., equivalently,

the form −1 + ε

1− ε
≤ ci ≤ −1.

Here also, the only value ci that satisfies both inequalities is the value ci = −1.

Finally, to the equation cm+1 +
m∑
j=1

yj · sj = 1, we put into correspondence

the following two tuples. In both tuples, yk = 1.

– In the first tuple, xik = (1 + ε) · si, and xm+1,k = 1 + ε. The correspond-

ing linear term has the form (1 + ε) ·
(

m∑
i=1

ci · si + cm+1

)
, and thus, the

corresponding inequality takes the form

1− ε ≤ (1 + ε) ·

(
m∑
i=1

ci · si + cm+1

)
≤ 1 + ε,

i.e., equivalently,

1− ε

1 + ε
≤

m∑
i=1

ci · si + cm+1 ≤ 1.

– In the second tuple, xik = (1− ε) · si, and xm+1,k = 1− ε. The correspond-

ing linear term has the form (1 − ε) ·
(

m∑
i=1

ci · si + cm+1

)
, and thus, the

corresponding inequality takes the form

1− ε ≤ (1− ε) ·

(
m∑
i=1

ci · si + cm+1

)
≤ 1 + ε,

i.e., equivalently,

1 ≤
m∑
i=1

ci · si + cm+1 ≤ 1 + ε

1− ε
.

Here, both inequalities are satisfied if and only if
m∑
i=1

ci · si + cm+1 = 1.

Overall, we have 2m + 2 pairs, i.e., 4m + 4 tuples. If for the given values
s1, . . . , sm, the original NP-hard problem has a solution yi, then we can take

ci = yi, cm+1 = 1, and thus satisfy M
def
= 2m+ 4 inequalities. Let us show that,

vice versa, if at least 2m+4 inequalities are satisfied, this means that the original
problem has a solution.

Indeed, for every i, each of the two inequalities corresponding to yi = 1
implies that ci > 0 while each of the two inequalities corresponding to yi = −1
implies that ci < 0. Thus, these inequalities incompatible, which means that
for every i, at most two inequalities can be satisfied. If for some i, fewer than
two inequalities are satisfied, then even when for every j ̸= i, we have two, and
all four remaining inequalities are satisfied, we will still have fewer than 2m+ 4
satisfied inequalities. This means that if 2m+4 inequalities are satisfied, then for
every i, two inequalities are satisfied – and thus, either ci = 1 or ci = −1. Now,
the four additional inequalities also have to be satisfied, so we have cm+1 = 1,

and
m∑
i=1

ci · si+ cm+1 = 1, hence
m∑
i=1

ci · si = 0. The reduction is proven, and thus

our problem is indeed NP-hard.

Comment. In this proof, we consider situations in which about half of the in-
equalities are satisfied. We may want to restrict ourselves to situations in which
a certain proportion of inequality should be satisfied – e.g., 90% or 99%. With
such a restriction, the problem remains NP-hard.

To prove this, it is sufficient to consider a similar reduction, in which:

– instead of single pair of tuples corresponding to cm+1 = 1 we haveN identical
pairs (for a sufficiently large N), and similarly,

– instead of a single pair corresponding to the equation
m∑
j=1

yj ·sj = 0, we have

N such identical pairs.

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of
Excellence) and DUE-0926721.

References

1. S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and
Models, Benjamin/Cummings, Menlo Park, California, 1986.

2. P. J. Huber, Robust Statistics, Wiley, Hoboken, New Jersey, 2004.
3. E. Mendes, Cost Estimation Techniques for Web Projects, IGI Publ., Hershey,

Pennsylvania, 2007.
4. C. H. Papadimitriou, Computational Complexity, Addison Wesley, San Diego, 1994.

	University of Texas at El Paso
	DigitalCommons@UTEP
	1-2015

	Optimizing pred(25) Is NP-Hard
	Martine Ceberio
	Olga Kosheleva
	Vladik Kreinovich
	Recommended Citation

