
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

2-2014

Range Estimation under Constraints is
Computable Unless There Is a Discontinuity
Martine Ceberio
University of Texas at El Paso, mceberio@utep.edu

Olga Kosheleva
University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Sciences Commons
Comments:
Technical Report: UTEP-CS-14-13
Published in Proceedings of the Seventh International Workshop on Constraints Programming and
Decision Making CoProd'2014, Wuerzburg, Germany, September 21, 2014.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Ceberio, Martine; Kosheleva, Olga; and Kreinovich, Vladik, "Range Estimation under Constraints is Computable Unless There Is a
Discontinuity" (2014). Departmental Technical Reports (CS). Paper 829.
http://digitalcommons.utep.edu/cs_techrep/829

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/829?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Range Estimation under Constraints is
Computable Unless There Is a Discontinuity

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, TX 79968, USA
{mceberio,olgak,vladik}@utep.edu

Abstract. One of the main problems of interval computations is com-
puting the range of a given function over given intervals. It is known that
there is a general algorithm for computing the range of computable func-
tions over computable intervals. However, if we take into account that
often in practice, not all possible combinations of the inputs are possi-
ble (i.e., that there are constraints), then it becomes impossible to have
an algorithm which would always compute this range. In this paper, we
explain that the main reason why range estimation under constraints is
not always computable is that constraints may introduce discontinuity –
and all computable functions are continuous. Specifically, we show that if
we restrict ourselves to computably continuous constraints, the problem
of range estimation under constraints remains computable.

1 Need for Range Estimation under Constraints

Need for data processing. To make a decision, in particular, to select an
engineering design and/or control strategy, we need to know the effects of select-
ing different alternatives. In most engineering problems, we know how different
quantities depend on each other and how they change with time. In particu-
lar, we usually know how the quantity y describing the effect depends on the
values of the quantities x1, . . . , xn describing the decision and the surrounding
environment: y = f(x1, . . . , xn). The resulting computations are known as data
processing.

Need to take uncertainty into account. In the ideal situation, when we
know the exact values x1, . . . , xn of the corresponding parameters, we can simply
substitute these values into a known function f , and get the desired value y. In
practice, the values x1, . . . , xn come from measurements, and measurements are
never absolutely accurate. As a result, the measurement results x̃1, . . . , x̃n are,
in general, somewhat different from the actual (unknown) values x1, . . . , xn of
the corresponding quantity. Thus, the estimate ỹ = f(x̃1, . . . , x̃n) is, in general,
different from the desired value y = f(x1, . . . , xn). To make an appropriate
decision, it is important to know how big can be the difference ỹ − y.

Need for range estimation. In many practical situations, the only informa-
tion that we have about the measurement error x̃i − xi of each corresponding
measurements is the upper bound ∆i provided by the manufacturer. In this case,

based on the measurement result x̃i, the only information that we can conclude

about xi is that xi belongs to the interval [xi, xi]
def
= [x̃i −∆i, x̃i +∆i].

Another case of such an interval uncertainty is when the parameter xi char-
acterizes a manufactured part; in this case, we know that the corresponding
value must lie within the tolerance interval – the interval [xi, xi] within which
the manufacturer of this part was required to keep this value.

Different values xi from the corresponding intervals [x̃i −∆i, x̃i +∆i] lead,
in general, to different values of y = f(x1, . . . , xn). It is therefore important to
estimate the range of all such values, i.e., the set

{f(x1, . . . , xn) : xi ∈ [xi, xi] for all i}.

In the usual case of continuous functions f , this range is an interval; we
will denote this interval by [y, y]. Estimation of this range interval is known as
interval computations; see, e.g., [4].

Range estimation problems are, in general, computable. It is known that
for computable functions f on computable intervals [xi, xi], there is an algorithm
which computes the range of the given function on given intervals; see, e.g., [3].

In general, the corresponding computational problem is NP-hard (meaning
that these computations may take a very long time), but there are many situa-
tions where feasible algorithms are possible for exact computations – and there
are also many feasible algorithms for providing enclosures for the desired ranges;
see, e.g., [3].

Need to take constraints into account. The above formulation of range
estimation problem assumes that the quantities x1, . . . , xn are independent – in
the sense that the set of possible values of, e.g., x1, does not depend on the actual
values of all other quantities. In practice, we often have additional constraints
which limit possible combinations of values (x1, . . . , xn).

For example, if x1 and x2 represent the control values are two consequent
moments of time, then usually, due to hardware limitations, these values cannot
differ much, we should have a constraint |x1 − x2| < δ for some small value
δ > 0. In this case, instead of the range of all possible values of f(x1, . . . , xn)
when each xi is in the corresponding interval, we are only interested in the range
of the values corresponding to the tuples (x1, . . . , xn) that satisfy all the known
constraints.

Constraints make the problem of range estimation more complex.
Adding constraints immediately makes the problem much more complex; see,
e.g., [1].

What we do in this paper. In this paper, we explain that the main rea-
son why range estimation under constraints is not always computable is that
constraints may introduce discontinuity – and all computable functions are con-
tinuous. Specifically, we show that if we restrict ourselves to computable con-
tinuous constraints, the problem of range estimation under constraints remains
computable.

2 Known Results: Brief Reminder

Definition 1.

– A real number x is called computable if there exists an algorithm that, given
a natural number k, returns a rational number rk for which |rk − x| ≤ 2−k.

– An interval [x, x] is called computable if both its endpoints are computable.
– A function f(x1, . . . , xn) from real numbers to real numbers is called com-

putable if there exist two algorithms:
• an algorithm that, given rational numbers r1, . . . , rn, and an integer k,

returns a rational number r for which |r − f(r1, . . . , rn)| ≤ 2−k; and
• an algorithm that, given a rational number ε > 0, returns a rational
number δ > 0 such that if |xi − x′

i| ≤ δ for all i, then

|f(x1, . . . , xn)− f(x′
1, . . . , x

′
n)| ≤ ε.

Proposition 1. [3, 5] There exists an algorithm that, given a computable function
f(x1, . . . , xn) and computable intervals [xi, xi] (1 ≤ i ≤ n), returns the range
[y, y] of this function on the given intervals.

Proof. To compute y with a given accuracy ε > 0, we first use the second
algorithm from the definition of a computable function to find δ > 0 for which
|xi − x′

i| ≤ δ implies that the values of f are (ε/2)-close to each other. On
each interval [xi, xi], we then select finitely many points xi, xi + δ, xi + 2δ,
. . . After that, for each combination (s1, . . . , sn) of the selected points, we use
the first algorithm to produce a rational number r which is (ε/2)-close to the
corresponding value f(s1, . . . , sn). Our claim is that the largest r of these rational
numbers is the desired ε-approximation to y.

Indeed, on the one hand, each rational value r is bounded by f(s1, . . . , sn)+
ε

2
.

Thus, from f(s1, . . . , sn) ≤ y, we conclude that r ≤ y +
ε

2
. In particular, this is

true for the largest of these numbers, hence r ≤ y +
ε

2
.

On the other hand, let us consider the values xi at which the function f
attains its largest possible value y: f(x1, . . . , xn) = y. Each value xi from the
corresponding interval is δ-close to one of the selected points si. Thus, each
combination (x1, . . . , xn) is δ-close to the corresponding combination (s1, . . . , sn)
of selected points – which, due to the choice of δ, implies that

|f(s1, . . . , sn)− f(x1, . . . , xn)| ≤
ε

2
.

So, f(s1, . . . , sn) ≥ y − ε

2
. For the corresponding number r, we have r ≥

f(s1, . . . , sn) −
ε

2
and hence, r ≥ y − ε. Since r is the largest of these ratio-

nal numbers, we get r ≥ r and therefore, r ≥ y − ε.
A similar proof shows that the smallest r of the corresponding rational num-

bers r is an ε-approximation to y. The proposition is proven.

Definition 2.

– By a computable constraint, we mean a constraint of one of the following
types: gj(x1, . . . , xn) = cj, gj(x1, . . . , xn) ≤ cj, cj ≤ gj(x1, . . . , xn), or
cj ≤ gj(x1, . . . , xn) ≤ cj, where gj(x1, . . . , xn) is a computable function and
cj, cj, and cj are computable numbers.

– By a problem of range estimation under constraints, we mean the following
problem:

• given a computable function f(x1, . . . , xn), n computable intervals
[xi, xi], and a finite list of computable constraints,

• compute the largest y and the smallest y values of f(x1, . . . , xn) for all
the tuples (x1, . . . , xn) of values xi ∈ [xi, xi] which satisfy all the given
constraints.

Proposition 2. No algorithm is possible which solves all the problems of range
estimation under constraints.

Comment. In other words, it is not possible to have an algorithm that, given the
function f , the intervals [xi, xi], and the constraints, would always compute the
values y and y.

Proof. Let us take n = 1, f(x1) = x1, and a constraint g(x1) = c1, where
g(x1) = min(x1,max(0, x1 − 1)). One can check that for x1 ≤ 0, we get g(x1) =
x1; for 0 ≤ x1 ≤ 1, we get g(x1) = 0, and for x1 ≥ 1, we get g(x1) = x1 − 1.
So, for c1 < 0, the constraint is only satisfied for the value x1 = c1, so we get
y = c1; on the other hand, for c1 = 0, the constraint g(x1) = c1 = 0 is satisfied
for all x1 ∈ [0, 1], so we get y = 1. When c1 → 0, the dependence of y on c1
is discontinuous, and all computable functions are continuous; see, e.g., [5]. The
proposition is proven.

3 New Result: Discontinuity Is the Only Obstacle to
Computing y and y

Definition 3.

– Let the computable intervals [xi, xi] be given, and let the computable functions
g1(x1, . . . , xn), . . . be given, and for each of these functions, let a type of the
corresponding constraint be given (i.e., = cj, ≤ cj, ≥ cj, or cj ≤ · ≤ cj).

– For each combination c of the threshold values cj, cj, and/or cj, by S(c), we
denote the set of all the tuples xi ∈ [xi, xi] which satisfy all the corresponding
constraints.

– For each δ > 0, we say that the combinations c and c′ are δ-close if the
corresponding threshold are δ-close (e.g., |cj − c′j | ≤ δ).

– We say that the set of constraints is computably continuous if there
exists an algorithm that, given a rational number ε > 0, returns a
rational number δ > 0 such that when c and c′ are δ-close, then

dH(S(c), S(c′)) ≤ ε, where dH(A,B) is the Hausdorff distance dH(A,B)
def
=

max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
and d(a,B)

def
= inf

b∈B
d(a, b).

Proposition 3. There exists an algorithm which solves the problem of range
estimation under constraints for all computably continuous constraints.

Comment. In other words, this algorithm, given the function f(x1, . . . , xn), the
intervals [xi, xi], and the constraints, returns the corresponding values y and y.

Proof. To estimate y and y with accuracy ε, let us find δ > 0 for which |xi−x′
i| ≤

δ implies that the f -values are ε-close. One can then show that if dH(S, S′) ≤ δ,
then max

x∈S
f(x) and max

x∈S′
f(x) are ε-close [2].

For this δ > 0, we can find β > 0 for which if c and c′ are β-close, then
dH(S(c), S(c′)) ≤ δ. We can now replace each equality gj = cj with inequalities
cj ≤ gj ≤ cj and, as long as |cj − cj | ≤ β and |cj − cj | ≤ β, we still have a
δ-close set S(c). The box [x1, x1] × . . . is a computable compact set (see [1, 3,
5]), so due to the known properties of such sets, there exists β-close values c′

for which the set S(c′) is a computable compact – and for which, therefore, the
maximum y′ and the minimum y′ of the computable function f(x) over S(c′) are
computable. Since S(c′) is δ-close to S(c), we have |y′ − y| ≤ ε and |y′ − y| ≤ ε.
The proposition is proven.

Proposition 4. When all constraints are inequalities, with cj < cj, then we
can solve all problems of range estimation for which the dependence S(c) is
continuous (not necessarily computably continuous).

Proof. For β = 2−k, k = 0, 1, . . ., we estimate the ranges [y′
j
, y′j] and [y′′

j
, y′′j] of

f over an inner β-approximation S(c′) and the outer β-approximations S(c′′).
Then y′′ ≤ y ≤ y′ (and y′ ≤ y ≤ y′′). Due to continuity, the sets S(c′) and S(c′′)
will eventually become δ-close and thus, the estimates y′ and y′′ become ε-close;
when this happens, we return y′ and y′ as the desired ε-approximations to y
and y.

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825, HRD-124212, and DUE-0926721.

References

1. M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision Making,
Springer Verlag, Berlin, Heidelberg, 2014.

2. V. Kreinovich and B. Kubica, “From computing sets of optima, Pareto sets, and
sets of Nash equilibria to general decision-related set computations”, Journal of
Universal Computer Science, 2010, Vol. 16, No. 18, pp. 2657–2685.

3. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity and
feasibility of data processing and interval computations, Kluwer, Dordrecht, 1997.

4. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis,
SIAM Press, 2009.

5. K. Weihrauch, Computable Analysis, Springer-Verlag, Berlin, 2000.

	University of Texas at El Paso
	DigitalCommons@UTEP
	2-2014

	Range Estimation under Constraints is Computable Unless There Is a Discontinuity
	Martine Ceberio
	Olga Kosheleva
	Vladik Kreinovich
	Recommended Citation

