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Abstract. In many practical situations, we need to optimize under
fuzzy constraints. There is a known Bellman-Zadeh approach for solv-
ing such problems, but the resulting solution, in general, depends on the
choice of a not well-defined constant M . We show that this dependence
disappears if we use an algebraic t-norm (and-operation) f&(a, b) = a · b,
and we also prove that the algebraic product is the only t-norm for which
the corresponding solution is independent on M .

1 Formulation of the Problem

Need for optimization under fuzzy constraints. In decision making, we would like
to find the best solution x among all possible solutions.

For example, if we need to build a chemical plant for producing chemicals
needed for space exploration and for sophisticated electronics, then we need to
select a design which is the most profitable among all the designs whose possi-
ble negative effect on the environment is small. In this example, the objective
function is the overall profit.

In this example (and in many similar examples) the objective functions is
well defined in the sense that for each alternative x, we can compute the exact
value f(x) of the objective function for this particular design. In contrast, the
constraints are not well-defined, they are formulated by using words from a
natural language (like “small”), words which are nor precise.

A reasonable way to describe the meaning of such imprecise (“fuzzy”) con-
straints is to use techniques of fuzzy logic (see, e.g., [4, 6, 8]), where to each
possible alternative x, we assign a number µc(x) describing to what extent this
design satisfies the corresponding constraint. To find this value µc(x), we can,
e.g., ask the user to mark this extent on a scale from 0 to 10, and if the user
marks 7, take µc(x) = 7/10.

This way, the original problem becomes a problem of optimization under
fuzzy constraint: find x for which f(x) is the largest possible among all x which
satisfy the constraint described by a function µc(x).



Bellman-Zadeh approach to optimization under fuzzy constraints. To solve such
problems, R. Bellman (a known specialist in optimization) and L. Zadeh (the
founder of the fuzzy logic approach) came back with the following idea; see, e.g.,
[1, 4].

First, we (somehow) find the smallest value m of the objective function f(x)
among all possible solutions x, and we also find the largest possible value M of
the objective function over all possible constraints. based on the values m and
M , we can form, for each alternative x, the degree µm(x) to which x is maximal,

as µm(x)
def
=

f(x)−m

M −m
. The larger f(x), the larger this degree, and it reaches

the value 1 if f(x) attains the largest possible value M .

We want to find an alternative which satisfies the constraints and opti-
mizes the objective function. In fuzzy techniques, the degree of truth in “and”-
statement is approximately described by applying an appropriate t-norm f(a, b)
to the degrees to which both statements are true; see, e.g., [4, 6]. A t-norm
must satisfy several natural properties: e.g., the fact that A&B means the
same as B&A leads to the commutativity f&(a, b) = f&(b, a), and the fact
that “true”&A is equivalent to just A leads to the property f&(1, a) = a.

– By applying the t-norm f&(a, b) to the degrees µc(x) and µm(x), we find the
degrees µs(x) = f&(µc(x), µm(x)) to which each alternative x is a solution.

– We then select the alternative which is the best fit, i.e., for which the degree
µs(x) is the largest.

Problem: the value M is not well defined. Usually, we have some prior experience
with similar problems, so we know some alternative(s) x which were previously
selected. The value f(x) for such “status quo” alternatives can be used as the
desired minimum m.

Finding M is much more complicated, we do not know which alternatives to
include and which not to include. If we replace the original value M with a new

value M ′ > M , then the maximizing degree changes, from µm(x) =
f(x)−m

M −m

to µ′
m(x) =

f(x)−m

M ′ −m
. One can easily see that µ′

m(x) = λ · µm(x) for λ
def
=

M −m

M ′ −m
< 1.

The problem is that in general, the alternatives for which the functions
µs(x) = f&(µc(x), µm(x)) and µ′

s(x) = f&(µc(x), µ
′
m(x)) = f&(µc(x), λ · µm(x))

may be different.

It is therefore desirable to come up with a scheme in which the solution
would not change if we simply re-scale µm(x) by modifying the not well-defined
quantity M .

What we do in this paper. In this paper, we show that the dependence on M
disappears if we use algebraic product t-norm f&(a.b) = a · b. We also show that
this is the only t-norm for which decisions do not depend on M .



2 Main Results

Definition 1. By a t-norm, we mean a function f& : [0, 1] × [0, 1] → [0, 1] for
which f&(a, b) = f&(b, a) and f&(1, a) = a for all a and b.

Comment. Usually, it is also required that the t-norm is associative. However,
our results do not need associativity, so they are valid for non-associative and-
operations as well; such non-associative operations are sometimes used to more
adequately describe human reasoning; see, e.g., [2, 3, 5, 7, 9].

Definition 2. Let f&(a, b) be a t-norm. We say that optimization under fuzzy
constraints is scale-invariant for this t-norm if for every set X, for every two
functions µc : X → [0, 1] and µm : X → [0, 1], and for every real number
λ ∈ (0, 1), we have S = S′, where:

• S is the set of all x ∈ X for which the function µs(x) = f&(µc(x), µm(x))
attains its maximum, i.e., for which µs(x) = max

y∈X
µs(y);

• S′ is the set of all x ∈ X for which the function µ′
s(x) = f&(µc(x), λ ·µm(x))

attains its maximum, i.e., for which µ′
s(x) = max

y∈X
µ′
s(y).

Proposition 1. For the algebraic product t-norm f&(a, b) = a · b, optimization
under fuzzy constraints is scale-invariant.

Proposition 2. The algebraic product t-norm f&(a, b) = a · b is the only t-norm
for which optimization under fuzzy constraints is scale-invariant.

Proof of Proposition 1. For the algebraic product t-norm:

• S is the set of all x ∈ X for which the function µs(x) = µc(x) ·µm(x) attains
its maximum, and

• S′ is the set of all x ∈ X for which the function µ′
s(x) = µc(x) · λ · µm(x)

attains its maximum.

Here, µ′
s(x) = λ · µs(x) for a positive number λ. Clearly, µs(x) ≥ µs(y) if and

only if λ · µs(x) ≥ λ · µs(y), so the optimizing sets S and S′ indeed coincide.

Proof of Proposition 2. Let f&(a, b) be a t-norm for which optimization under
fuzzy constraints is scale-invariant, and let a and b be two number from the
interval [0, 1]. Let us prove that f&(a, b) = a · b.

Let us consider X = {x1, x2} with µc(x1) = µm(x2) = a and µc(x2) =
µm(x1) = 1. In this case, µs(x1) = f&(µc(x1), µm(x1)) = f&(a, 1). Due to
commutativity, we get µs(x1) = f&(1, a) and due to the second property of
the t-norm, we get µs(x1) = a.

Similarly, we have µs(x2) = f&(µc(x2), µm(x2)) = f&(1, a). Due to the sec-
ond property of the t-norm, we also get µs(x2) = a.

Since µs(x1) = µs(x2), the optimizing set S consists of both elements x1 and
x2.



Due to scale-invariance, for λ = b, the same set S′ = S = {x1, x2} must be
the optimizing set for the function µ′

s(x) = f&(µc(x), λ · µm(x)). Thus, we must
have µ′

s(x1) = µ′
s(x2), i.e., f&(a, b · 1) = f&(1, b · a). So, f&(a, b) = f&(1, a · b).

Due to the second property of the t-norm, we conclude that f&(a, b) = a · b.
The proposition is proven.
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