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Simplicity Is Worse Than Theft:
A Constraint-Based Explanation of a Seemingly

Counter-Intuitive Russian Saying

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, TX 79968, USA
{mceberio,olgak,vladik}@utep.edu

Abstract. In many practical situations, simplified models, models that
enable us to gauge the quality of different decisions reasonably well, lead
to far-from-optimal situations when used in searching for an optimal
decision. There is even an appropriate Russian saying: simplicity is worse
than theft. In this paper, we provide a mathematical explanation of this
phenomenon.

In science, simplicity is good. The world around us is very complex. One of
the main objectives of science is to simplify it – and since has indeed greatly
succeeded in doing it. For example, when Isaac Newton discovered his dynamical
equations, it allowed him to explain the complex pictures of celestial bodies
motion in terms of simple laws, laws that enable us to predict their positions for
hundreds of years ahead.

From this viewpoint, a simplicity of a description is desirable. Yes, to achieve
this simplicity, we sometimes ignore minor factors – but without such simplifying
assumptions, it is difficult to make predictions, and predictions made based on
these simplifying assumptions is usually reasonably good. For example, in his
celestial mechanics studies, Newton ignored the fact that the planets and the
Sun have finite size, and treated them as points with mass. To some extent,
this simplifying assumption was justified: the gravitational field of a rotationally
symmetric body is indeed the same as the field generated by the point with the
same mass. However, real bodies are not perfectly symmetric, and there is a
small discrepancy between the actual field and Newton’s approximate values.

In real life, simplified models – that seem to be working well for prediction – are
sometimes disastrous when we move to decision making. One of the main pur-
poses of science is to explain the world, to be able to predict what is happening
in the world. Once this understanding is reached, once we have acquired the
knowledge about the world, we use this knowledge to come up with actions that
would make the world a better place.

For example, once the scientists get a better understanding of how cracks
propagate through materials, it helps engineers design more stable constructions.
Once the scientists learn about the life cycle of viruses, it helps develop medicines
that prevent and cure the diseases caused by these viruses.



What happens sometimes is that the simplified models, models which have
led to very accurate predictions, are not as efficient when we use them in decision
making. Numerous examples of such an inefficiency can be found in the Soviet
experiment with the global planning of economy; see, e.g., [11] and references
therein. In spite of using latest techniques of mathematical economics, including
the ideas of the Nobelist Wassily Leontieff [5] who started his research as a
leading USSR economist, the results were sometimes disastrous.

For example, during the Soviet times, buckwheat – which many Russian like
to eat – was often difficult to buy. A convincing after-the-fact explanation is
based on the fact that if we describe the economy in too many details, the
corresponding optimization problem becomes too complex to solve. To make it
solvable, the problem has been simplified, usually by grouping several similar
quantities together. For example, many different types of grains were grouped
together into a single grain rubric. The corresponding part of the optimization
task became as follows: optimize the overall grain production under the given
costs. The problem is that for the same expenses, we can get slightly more wheat
than buckwheat. As a result, when we optimize the overall grain production,
buckwheat is replaced by wheat – and thus, the buckwheat production shrank.

A similar example related to transportation is described in [10]. One of the
main symptoms of an inefficient use of trucks is that sometimes, instead of
delivering goods, trucks spend too much time waiting to be loaded, or getting
stuck in traffic. Another symptom is when a truck is under-loaded, so that a small
load is inefficiently transported by an unnecessarily large truck. In view of these
symptoms, a natural way to gauge the efficiency of a transportation company
is to measures the amount of tonne-kilometers that it produced during a given
time period. If this amount is close to the product of the overall truck capacity
and the distance which can be covered during this time period, the company
is more efficient; if this amount is much smaller, there is probably room for
improvement. In view of this criterion, when the first efficient reasonably large-
scale optimization algorithms appeared in the last 1960s, scientists decided to
use these algorithms to find the optimal transportation schedule in and around
Moscow – by optimizing the total number of tonne-kilometers. The program did
find a mathematically optimal solution, but this solution was absurd: load full
weight on all the trucks in the morning and let them go round and round the
Circular Highway around Moscow :-(

In all these anecdotal examples, a simplified model – which works reasonably
well in estimating the relative quality of the existing situations – leads to absurd
solutions when used for optimization. Such situations were so frequent that there
is a colorful Russian saying appropriate for this phenomenon: simplicity is worse
than theft.

Question. There is an anecdotal evidence of situations in which the use of sim-
plified models in optimization leads to absurd solutions. How frequent are such
situations? Are they typical or rare?

To answer this question, let us analyze this question from the mathematical
viewpoint.



Reformulating the question in precise terms. In a general decision making prob-
lem, we have a finite amount of resources, and we need to distribute them be-
tween n possible tasks, so as to maximize the resulting outcomes. For example,
a farmer has a finite amount of money, and we need to allocate them to differ-
ent possible crops so as to maximize the income. Police has a finite amount of
officers, and we need to allocate them to different potential trouble spots so as
to minimize the resulting amount of crime, etc. In some practical problems, we
have limitations on several different types of resources, but for simplicity, we will
assume that all resources are of one type.

Let x0 be the total amount of resources, let n be the total number of possible
tasks, and let x1, . . . , xn be the amounts allocated to different tasks; then, xi ≥ 0
and x1 + . . .+ xn = x0. Let f(x1, . . . , xn) be the outcome corresponding to the
allocation x = (x1, . . . , xn). In many practical problems, the amount of resources
is reasonably small. In such cases, we can expand the dependence f(x1, . . . , xn)
in the Taylor series and keep only linear terms in this expansion. In this case,

the objective function takes a linear form f(x1, . . . , xn) = c0 +
n∑

i=1

ci · xi. The

question is then to find the values x1, . . . , xn ≥ 0 for which the sum c0+
n∑

i=1

ci ·xi

is the largest possible under the constraint that
n∑

i=1

xi = x0.

What does simplification means in this formulation. For this problem, simplifica-
tion – in the sense of the above anecdotal examples – means that we replace indi-
vidual variables by their sum. This can be always done if for two variables xi and
xj , the coefficients ci and cj are equal. In this case, the sum of the corresponding
terms in the objective function takes the form ci · xi + cj · xj = ci · (xi + xj),
so everything depends only on the sum xi + xj (and does not depend on the
individual values of these variables).

Since this replacement can be done exactly when the coefficients ci and cj
are equal, it makes sense to perform a similar replacement when the coefficients
ci and cj are close to each other. In this case, we replace both coefficients ci
and cj , e.g., by their average. Similarly, if we have several variables with similar
coefficients ci, we replace all these coefficients by the average value.

Not all the variables have similar coefficients. Let us assume that for all
other variables xk, we have already selected some values, so only the variables
with similar coefficients remain. In this case, the objective problem reduces to
optimizing the sum

∑
ci · xi over remaining variables, and the constraint take

the form
∑

xi = X0, where X0 is equal to x0 minus the sum of already allocated
resources. If we now rename the remaining variables as x1, . . . , xm, we arrive at
the following situation:

– the original problem is to maximize the sum f(x1, . . . , xm) =
m∑
i=1

ci ·xi under

the constraint
m∑
i=1

xi = X0;



– for simplicity, we replace this original problem by the following one: maximize

the sum s(x1, . . . , xm) =
m∑
i=1

c · xi under the constraint
m∑
i=1

xi = X0.

The simplified description provides, in general, a reasonable estimate for the
objective function. Let us first show that the question is to estimate the value of
the objective function corresponding to given allocations x = (x1, . . . , xm), then
the estimation provided by the simplified expression is reasonably accurate.

Indeed, due to many different factors, the actual values ci differ from the
average c. There are so many different reasons for this deviation, that it makes

sense to assume that the deviations ∆ci
def
= ci − c are independent identically

distributed random variables, with mean 0 and some standard deviation σ. In

this case, the approximation error a
def
= f(x1, . . . , xm)− s(x1, . . . , xm) takes the

form a =
m∑
i=1

∆ci · xi. Since all ∆ci are independent, with mean 0 and stan-

dard deviation σ, their linear combination a has mean 0 and standard deviation

σ[a] = σ ·
√

m∑
i=1

x2
i . In particular, when the resources are approximately equally

distributed between different tasks, i.e., xi ≈ X0

m
, this standard deviation is

equal to σ[a] = X0 ·
σ√
m
. The actual value of the objective function is approxi-

mately equal to s(x1, . . . , xm) = c ·
m∑
i=1

xi = c ·X0. Thus, the relative accuracy of

approximating f by s can be described as the ratio
σ[a]

s
=

σ

c ·
√
m
. When m is

large, this ratio is small, meaning that this simplification indeed leads to a very
accurate estimation.

For optimization, the simplified objective function can lead to drastic non-
optimality. From the mathematical viewpoint, the above optimization problem

is easy to solve: to get the largest gain
m∑
i=1

ci · xi, we should allocate all the re-

sources X0 to the task that leads to the largest amount of gain per unit resource,
i.e., to the task with the largest possible value ci. In this case, the resulting gain
is equal to X0 · max

i=1,...,m
ci.

On the other hand, for the simplified objective function, its value is the same
no matter how we distribute the resources, and is equal toX0 ·c. In this simplified
problem, it does not matter how we allocate the resources between the tasks, so
we can as well allocate them equally. In this case, the resulting gain is indeed
equal to X0 · c.

For random variables, the largest value max ci is often much larger than
the average c; moreover, the larger the sample size m, the more probable it is
that we will observe values which are much larger than the average. This is
especially true for power-law distributions which are frequent in economics and



finance; see, e.g., [1–4, 6–9, 12–14]. These distributions have heavy tails, with a
high probability of ci exceeding the mean. Thus, the simplified model can indeed
lead to very non-optimal solutions.
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