Selecting the Best Location for a Meteorological Tower: A Case Study of Multi-Objective Constraint Optimization

Aline James

Craig Tweedie
University of Texas at El Paso, ctweedie@utep.edu
Tanja Magoc
University of Texas at El Paso, tmagoc@utep.edu
Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu
Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Enrine Celtherioomputer Engineering Commons
University of Texas at ElPaso, mceberio@utep.edu
Comments:

Technical Report: UTEP-CS-09-30d
Short version published in: Martine Ceberio (ed.), Abstracts of the Second Workshop on Constraint Programming and Decision Making CoProD'09, El Paso, Texas, November 9-10, 2009, pp. 56-60; a more detailed version published in Proceedings of the IEEE World Congress on Computational Intelligence WCCI'2010, Barcelona, Spain, July 18-23, 2010, pp. 2355-2361; a detailed version to appear in Journal of Uncertain Systems

Recommended Citation

James, Aline; Tweedie, Craig; Magoc, Tanja; Kreinovich, Vladik; and Ceberio, Martine, "Selecting the Best Location for a Meteorological Tower: A Case Study of Multi-Objective Constraint Optimization" (2010). Departmental Technical Reports (CS). Paper 57.
http://digitalcommons.utep.edu/cs_techrep/57

Multi-Objective Optimization under Positivity Constraints, with a Meteorological Example

Aline Jaimes, Craig Tweedie, Tanja Magoč, Vladik Kreinovich, Senior Member, IEEE, and Martine Ceberio

Abstract

In many practical situations, we need to optimize several objectives under the positivity constraints. For example, in meteorological and environmental studies, it is important to collect various types of data, such as temperature and wind speed and direction, from weather stations. For maintenance purposes, it is convenient to place instruments that collect different weather data on the same weather station. Thus, we need to find the "best" location for a weather station. The "best" means, for example, that the external influences, such as flux of cars passing on nearby road, have a minimal impact on the measurement results. There are several such criteria, so we face a multi-objective optimization problem. In this paper, we show that traditional approaches for solving such problems - such as the weighted sum approach - are not fully adequate for solving our problem. We show that fuzzy heuristics lead to a more adequate approach - of using a generalized form of Nash bargaining solution. We then prove that under reasonable assumptions of scale-invariance, the generalized Nash bargaining solution is the only adequate solution for the general problem of multi-objective optimization under positivity constraints - and, in particular, for the problem of selecting an optimal location for a weather station.

I. Formulation of the Problem

General problem. In many practical situations, we need to optimize several objectives under the positivity constraints. Let us illustrate this need on a meteorological example.

Meteorological example. In meteorological and environmental studies, it is important to get additional data from remote locations; see, e.g., [6].

One way of collecting this additional data is to place several different sensors on a single tower. It is therefore important to select the best location of a sophisticated multisensor meteorological tower.

In this selection, we have several criteria to satisfy [4].

- For example, the station should not be located too close to a road, so that the gas flux generated by the cars does not influence our measurements of atmospheric fluxes; in other words, the distance x_{1} to the road should be larger than a certain threshold $t_{1}: x_{1}>t_{1}$, or $y_{1} \stackrel{\text { def }}{=}$ $x_{1}-t_{1}>0$.
- Also, the inclination x_{2} at the station's location should be smaller than a corresponding threshold t_{2}, because otherwise, the flux will be mostly determined by this inclination and will not be reflective of the atmospheric processes: $x_{2}<t_{2}$, or $y_{2} \stackrel{\text { def }}{=} t_{2}-x_{2}>0$.

[^0] Martine Ceberio are with the Cyber-ShARE Center, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA (contact email: vladik@utep.edu).

General case. In general, we have several such differences y_{1}, \ldots, y_{n} all of which have to be non-negative. For each of the differences y_{i}, the larger its value, the better.

II. Weighted Average: A Natural Idea and Its Limitations

Problem: reminder. We want to select the best location based on the values of the differences y_{1}, \ldots, y_{n}. For each of the differences y_{i}, the larger its value, the better.

Multi-criteria optimization. Our problem is a typical setting for multi-criteria optimization; see, e.g., [2], [12], [13].

Weighted average. A most widely used approach to multicriteria optimization is weighted average, where we assign weights $w_{1}, \ldots, w_{n}>0$ to different criteria y_{i} and select an alternative for which the weighted average

$$
w_{1} \cdot y_{1}+\ldots+w_{n} \cdot y_{n}
$$

attains the largest possible value.
This approach has been used in many practical problems ranging from selecting the lunar landing sites for the Apollo missions [1] to selecting landfill sites [3].

Additional requirement. In our problem, we have an additional requirement - that all the values y_{i} must be positive. Thus, we must only compare solutions with $y_{i}>0$ when selecting an alternative with the largest possible value of the weighted average.

Limitations of the weighted average approach. In general, the weighted average approach often leads to reasonable solutions of the multi-criteria optimization problem. However, as we will show, in the presence of the additional positivity requirement, the weighted average approach is not fully satisfactory.

A practical multi-criteria optimization must take into account that measurements are not absolutely accurate. Indeed, the values y_{i} come from measurements, and measurements are never absolutely accurate. The results \widetilde{y}_{i} of the measurements are close to the actual (unknown) values y_{i} of the measured quantities, but they are not exactly equal to these values. If

- we measure the values y_{i} with higher and higher accuracy and,
- based on the resulting measurement results \widetilde{y}_{i}, we conclude that the alternative $y=\left(y_{1}, \ldots, y_{n}\right)$ is better than some other alternative $y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$,
then we expect that the actual alternative y is indeed either better than y^{\prime} or at least of the same quality as y^{\prime}. Otherwise, if we do not make this assumption, we will not be able to make any meaningful conclusions based on real-life (approximate) measurements.

The above natural requirement is not always satisfied for weighted average. Let us show that for the weighted average, this "continuity" requirement is not satisfied even in the simplest case when we have only two criteria y_{1} and y_{2}. Indeed, let $w_{1}>0$ and $w_{2}>0$ be the weights corresponding to these two criteria. Then, the resulting strict preference relation \succ has the following properties:

- if $y_{1}>0, y_{2}>0, y_{1}^{\prime}>0$, and $y_{2}^{\prime}>0$, and

$$
w_{1} \cdot y_{1}^{\prime}+w_{2} \cdot y_{2}^{\prime}>w_{1} \cdot y_{1}+w_{2} \cdot y_{2}
$$

then

$$
\begin{equation*}
y^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \succ y=\left(y_{1}, y_{2}\right) ; \tag{1}
\end{equation*}
$$

- if $y_{1}>0, y_{2}>0$, and at least one of the values y_{1}^{\prime} and y_{2}^{\prime} is non-positive, then

$$
\begin{equation*}
y=\left(y_{1}, y_{2}\right) \succ y^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \tag{2}
\end{equation*}
$$

Let us consider, for every $\varepsilon>0$, the tuple $y^{\prime}(\varepsilon) \stackrel{\text { def }}{=}$ $\left(\varepsilon, 1+\frac{w_{1}}{w_{2}}\right)$, with $y_{1}^{\prime}(\varepsilon)=\varepsilon$ and $y_{2}^{\prime}(\varepsilon)=1+\frac{w_{1}}{w_{2}}$, and also the comparison tuple $y=(1,1)$. In this case, for every $\varepsilon>0$, we have

$$
\begin{gather*}
w_{1} \cdot y_{1}^{\prime}(\varepsilon)+w_{2} \cdot y_{2}^{\prime}(\varepsilon)= \\
w_{1} \cdot \varepsilon+w_{2}+w_{2} \cdot \frac{w_{1}}{w_{2}}=w_{1} \cdot(1+\varepsilon)+w_{2} \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
w_{1} \cdot y_{1}+w_{2} \cdot y_{2}=w_{1}+w_{2} \tag{4}
\end{equation*}
$$

hence $y^{\prime}(\varepsilon) \succ y$. However, in the limit $\varepsilon \rightarrow 0$, we have $y^{\prime}(0)=\left(0,1+\frac{w_{1}}{w_{2}}\right)$, with $y_{1}^{\prime}(0)=0$ and thus, $y^{\prime}(0) \prec y$.

III. Heuristic Idea Motivated by Fuzzy Logic

Reformulation of the problem. We want to make sure that the first criterion is satisfied and that the second criterion is satisfied, ..., and that the n-th criterion is satisfied. From this viewpoint, some locations are better, and some other locations are worse. We would like to find a location for which the "degree" d to which all n criteria are satisfied is the largest possible. The question is how to describe the dependence of this degree d on the values x_{1}, \ldots, x_{n} (or, equivalently, y_{1}, \ldots, y_{n}) that characterize the corresponding location.

Fuzzy logic can help. Fuzzy logic (see, e.g., [5], [9]) provides a natural way to estimate this degree.

- First, we estimate the degrees d_{1}, \ldots, d_{n} to which each of the constraints is satisfied.
- Then, we use a t-norm (fuzzy analogue of "and") to combine these degrees into a single degree d.

Determining the degree of satisfaction for each criterion. For each criterion, the degree of satisfaction is 0 when the corresponding variable x_{i} attains its threshold threshold value $x_{i}=t_{i}$ - i.e., when the difference y_{i} attains the value 0 . The larger the difference y_{i}, the larger our degree of satisfaction with the i-th criterion. Thus, the degree d_{i} is an increasing function of y_{i}, with $d_{i}(0)=0$. Let us try the simplest possible function of this type: a linear function $d_{i}\left(y_{i}\right)=k_{i} \cdot y_{i}$, with $k_{i}>0$.

Comment. When $y_{i}<0$, the degree of satisfaction is 0 . Thus, strictly speaking, we have $d_{i}\left(y_{i}\right)=\max \left(0, k_{i} \cdot y_{i}\right)$.

Selecting a t-norm. To combine the degrees $d_{i}=k_{i} \cdot y_{i}$ corresponding to different criteria into a single degree, we can use an arbitrary t-norm $t: d=t\left(d_{1}, \ldots, d_{n}\right)$.
Here, we would also like to select a t-norm that leads to the simplest possible computations. At this stage, the choice of the t-norm affects the computations in two different ways:

- first, we need to compute the combined degree d;
- second, we need to optimize the resulting functional

$$
d\left(y_{1}, \ldots, y_{n}\right)=t\left(d_{1}\left(y_{1}\right), \ldots, d_{n}\left(y_{n}\right)\right) .
$$

Which functions are easier to optimize? Function optimization is a well-known practical problem. One of the motivations for Newton's and Leibniz's invention of calculus was to help in solving this problem. Since the invention of calculus, a standard way of optimizing a function is based on equating its derivative to 0 . It is known that nonsmooth functions, for which differentiation is not possible, are much more difficult to optimize. It is therefore reasonable to require that the result $t\left(d_{1}\left(y_{1}\right), \ldots, d_{n}\left(y_{n}\right)\right)$ be smooth. Since the functions $d_{i}\left(y_{i}\right)$ are linear hence differentiable, it is therefore sufficient to require that the t-norm itself also be differentiable.

Among all differentiable t-norms, let us select the simplest one. This is clearly the product t-norm $t(a, b)=a \cdot b$ since its computation requires a single computer operation. There is one other t-norm with the same property, the minimum t -norm $t(a, b)=\min (a, b)$, but the minimum t -norm is not everywhere differentiable: it is not differentiable when $a=b$. Thus, we should select the product t -norm.

Resulting expression. As a result, we arrive at the following expression for the optimized degree d :

$$
d=\left(k_{1} \cdot y_{1}\right) \cdot \ldots \cdot\left(k_{n} \cdot y_{n}\right) .
$$

This expression is equal to $K \cdot \prod_{i=1}^{n} y_{i}$, where $K \stackrel{\text { def }}{=} \prod_{i=1}^{n} k_{i}$. Thus, the problem of maximizing d is equivalent to the problem of maximizing the product $\prod_{i=1}^{n} y_{i}$ of the values y_{i}.

This approach is indeed better than weighted average. One can show that the optimization of the product satisfies the above reasonable assumption: that if $y^{\prime}(\varepsilon) \succ y$ and $y^{\prime}(\varepsilon) \rightarrow y^{\prime}(0)$, then $y^{\prime}(0) \succeq y$. We will see, in the following text, that this approach has other useful properties - e.g., it is
scale-invariant, i.e., does not depend on the choice of units for measuring different quantities x_{i}.

A minor modification of the above criterion: using hedges. We have come up with a product as the simplest possible way of combining different criteria. What if this simple approach does not work well? What is the natural next approximation?

One reason why the above approach may not always work perfectly well is that, when deriving this approach, we implicitly assumed that all n criteria are equally important. In real life, this is rarely the case. Usually, some criteria are very important, some criteria are slightly important, etc. It is therefore reasonable, in general, to combine not just the degrees of satisfaction $d_{i}=k_{i} \cdot y_{i}$ of different criteria, but the degree to which the corresponding criteria are "very" satisfied or "somewhat" satisfied, etc. In other words, instead of combining the values d_{i} themselves, it is reasonable to combine the results $h_{i}\left(d_{i}\right)$ of applying the corresponding hedges $h_{i}(z)$ to these degrees d_{i}.

Selecting an appropriate hedge. Which hedges should we choose? Since we want to combine the results of applying these hedges by using the simple product "and"-operation, it is reasonable to select hedges $h(z)$ which are consistent with this operation, i.e., for which, e.g., "very $(a \& b)$ " means the same as "very a and very b ".

In mathematical terms, this means that we select hedges (monotonic functions) for which $h(a \cdot b)=h(a) \cdot h(b)$. All solutions of this functional equation are known. They can be obtained, e.g., by turning to \log scale for both a and h, then for logarithms $H \stackrel{\text { def }}{=} \ln (h), A \stackrel{\text { def }}{=} \ln (a)$, and $B \stackrel{\text { def }}{=} \ln (b)$, we get

$$
H(A+B)=H(A)+H(B)
$$

hence $H(A)=\alpha \cdot A=\alpha \cdot \ln (a)$, and
$h(a)=\exp \left(\ln (h(a))=\exp (H(a))=\exp (\alpha \cdot \ln (a))=a^{\alpha}\right.$.

Resulting expression. Thus, in general, we get the expres$\operatorname{sion} d=\prod_{i=1}^{n} y_{i}^{\alpha_{i}}$.
What we do in this paper. We show that not only this fuzzy-motivated expression has several reasonable properties: the fuzzy-motivated expression is actually the only possible expression that satisfies several reasonable properties.

To formulate and prove this result, let us go back to the analysis of the original problem.

IV. Towards a More Adequate Approach to Multi-Criterion Optimization

What we want: a precise description. We want to be able to compare different alternatives.

Each alternative is characterized by a tuple of n values $y=\left(y_{1}, \ldots, y_{n}\right)$, and only alternatives for which all the values y_{i} are positive are allowed. Thus, from the mathematical
viewpoint, the set of all alternatives is the set $\left(R^{+}\right)^{n}$ of all the tuples of positive numbers.

For each two alternatives y and y^{\prime}, we want to tell whether y is better than y^{\prime} (we will denote it by $y \succ y^{\prime}$ or $y^{\prime} \prec y$), or y^{\prime} is better than $y\left(y^{\prime} \succ y\right)$, or y and y^{\prime} are equally $\operatorname{good}\left(y^{\prime} \sim y\right.$). These relations must satisfy natural properties. For example, if y is better than y^{\prime} and y^{\prime} is better than $y^{\prime \prime}$, then y is better than $y^{\prime \prime}$. In other words, the relation \succ must be transitive. Similarly, the relation \sim must be transitive, symmetric, and reflexive ($y \sim y$), i.e., in mathematical terms, an equivalence relation.

So, we want to define a pair of relations \succ and \sim such that \succ is transitive, \sim is transitive, \sim is an equivalence relation, and for every y and y^{\prime}, one and only one of the following relations hold: $y \succ y^{\prime}, y^{\prime} \succ y$, or $y \sim y^{\prime}$.

It is also reasonable to require that if each criterion is better, then the alternative is better as well, i.e., that if $y_{i}>y_{i}^{\prime}$ for all i, then $y \succ y^{\prime}$.

Comment. Pairs of relations of the above type can be alternatively characterized by a pre-ordering relation

$$
\begin{equation*}
y^{\prime} \succeq y \Leftrightarrow\left(y^{\prime} \succ y \vee y^{\prime} \sim y\right) . \tag{5}
\end{equation*}
$$

This relation must be transitive and - in our case - total (i.e., for every y and y^{\prime}, we have $y \succeq y^{\prime} \vee y^{\prime} \succeq y$. Once we know the pre-ordering relation \succeq, we can reconstruct \succ and \sim as follows:

$$
\begin{align*}
& y^{\prime} \succ y \Leftrightarrow\left(y^{\prime} \succeq y \& y \succeq y^{\prime}\right) \tag{6}\\
& y^{\prime} \sim y \Leftrightarrow\left(y^{\prime} \succeq y \& y \succeq y^{\prime}\right) \tag{7}
\end{align*}
$$

Scale invariance: motivation. The quantities y_{i} describe completely different physical notions, measured in completely different units. In our meteorological case, some of these values are wind velocities measured in meters per second, or in kilometers per hour, or miles per hour. Other values are elevations described in meters, kilometers, or feet, etc. Each of these quantities can be described in many different units. A priori, we do not know which units match each other, so it is reasonable to assume that the units used for measuring different quantities may not be exactly matched.

It is therefore reasonable to require that the relations \succ and \sim between the two alternatives $y=\left(y_{1}, \ldots, y_{n}\right)$ and $y^{\prime}=$ $\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ do not change if we simply change the units in which we measure each of the corresponding n quantities.

Comment. The importance of such invariance is well known in measurements theory, starting with the pioneering work on S. S. Stevens in [14]; see also the classical books [10] and [7] (especially Chapter 22), where this invariance is also called meaningfulness.

Scale invariance: towards a precise description. When we replace a unit in which we measure a certain quantity q by a new measuring unit which is $\lambda>0$ times smaller, then the numerical values of this quantity increase by a factor of λ :
$q \rightarrow \lambda \cdot q$. For example, 1 cm is $\lambda=100$ times smaller than 1 m , so the length $q=2 \mathrm{~m}$, when measured in cm , becomes $\lambda \cdot q=2 \cdot 100=200 \mathrm{~cm}$.

Let λ_{i} denote the ratio of the old to the new units corresponding to the i-th quantity. Then, the quantity that had the value y_{i} in the old units will be described by a numerical value $\lambda_{i} \cdot y_{i}$ in the new units. Therefore, scale-invariance means that for all $y, y^{\prime} \in\left(R^{+}\right)^{n}$ and for all $\lambda_{i}>0$, we have

$$
\begin{gather*}
y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \succ y=\left(y_{1}, \ldots, y_{n}\right) \Rightarrow \\
\left(\lambda_{1} \cdot y_{1}^{\prime}, \ldots, \lambda_{n} \cdot y_{n}^{\prime}\right) \succ\left(\lambda_{1} \cdot y_{1}, \ldots, \lambda_{n} \cdot y_{n}\right) \tag{8}
\end{gather*}
$$

and

$$
\begin{gather*}
y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \sim y=\left(y_{1}, \ldots, y_{n}\right) \Rightarrow \\
\left(\lambda_{1} \cdot y_{1}^{\prime}, \ldots, \lambda_{n} \cdot y_{n}^{\prime}\right) \sim\left(\lambda_{1} \cdot y_{1}, \ldots, \lambda_{n} \cdot y_{n}\right) . \tag{9}
\end{gather*}
$$

Comment. In general, in measurements, in addition to changing the unit, we can also change the starting point. However, for the differences y_{i}, the starting point is fixed by the fact that 0 corresponds to the threshold value. So, in our case, only changing a measuring unit (= scaling) makes sense.

Continuity. As we have mentioned in the previous section, we also want to require that the relations \succ and \sim are continuous in the following sense: if $y^{\prime}(\varepsilon) \succeq y(\varepsilon)$ for every ε, then in the limit, when $y^{\prime}(\varepsilon) \rightarrow y^{\prime}(0)$ and $y(\varepsilon) \rightarrow y(0)$ (in the sense of normal convergence in R^{n}), we should have $y^{\prime}(0) \succeq y(0)$.

Let us now describe our requirements in precise terms.
Definition 1. By a total pre-ordering relation on a set Y, we mean a pair of a transitive relation \succ and an equivalence relation \sim for which, for every $y, y^{\prime} \in Y$, one and only one of the following relations hold: $y \succ y^{\prime}, y^{\prime} \succ y$, or $y \sim y^{\prime}$.

Comment. We will denote $y \succeq y^{\prime} \stackrel{\text { def }}{=}\left(y \succ y^{\prime} \vee y \sim y^{\prime}\right)$.
Definition 2. We say that a total pre-ordering is non-trivial if there exist y and y^{\prime} for which $y^{\prime} \succ y$.

Comment. This definition excludes the trivial pre-ordering in which every two tuples are equivalent to each other.

Definition 3. We say that a total pre-ordering relation on the set $\left(R^{+}\right)^{n}$ is:

- monotonic if $y_{i}^{\prime}>y_{i}$ for all i implies $y^{\prime} \succ y$;
- scale-invariant if for all $\lambda_{i}>0$:
- $\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \succ y=\left(y_{1}, \ldots, y_{n}\right)$ implies

$$
\left(\lambda_{1} \cdot y_{1}^{\prime}, \ldots, \lambda_{n} \cdot y_{n}^{\prime}\right) \succ\left(\lambda_{1} \cdot y_{1}, \ldots, \lambda_{n} \cdot y_{n}\right),
$$

and

- $\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \sim y=\left(y_{1}, \ldots, y_{n}\right)$ implies

$$
\left(\lambda_{1} \cdot y_{1}^{\prime}, \ldots, \lambda_{n} \cdot y_{n}^{\prime}\right) \sim\left(\lambda_{1} \cdot y_{1}, \ldots, \lambda_{n} \cdot y_{n}\right) .
$$

- continuous if whenever we have a sequence $y^{(k)}$ of tuples for which $y^{(k)} \succeq y^{\prime}$ for some tuple y^{\prime}, and the sequence $y^{(k)}$ tends to a limit y, then $y \succeq y^{\prime}$.

Theorem 1. Every non-trivial monotonic scale-invariant continuous total pre-ordering relation on $\left(R^{+}\right)^{n}$ has the following form:

$$
\begin{gathered}
y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \succ y=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \\
\prod_{i=1}^{n}\left(y_{i}^{\prime}\right)^{\alpha_{i}}>\prod_{i=1}^{n} y_{i}^{\alpha_{i}} ; \\
y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \sim y=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \\
\prod_{i=1}^{n}\left(y_{i}^{\prime}\right)^{\alpha_{i}}=\prod_{i=1}^{n} y_{i}^{\alpha_{i}}
\end{gathered}
$$

for some constants $\alpha_{i}>0$.
Comment. In other words, for every non-trivial monotonic scale-invariant continuous total pre-ordering relation on $\left(R^{+}\right)^{n}$, there exist values $\alpha_{1}>0, \ldots, \alpha_{n}>0$ for which the above equivalence holds. Vice versa, for each set of values $\alpha_{1}>0, \ldots, \alpha_{n}>0$, the above formulas define a monotonic scale-invariant continuous pre-ordering relation on $\left(R^{+}\right)^{n}$.

It is worth mentioning that the resulting relation coincides with the asymmetric version [11] of the bargaining solution proposed by the Nobelist John Nash in 1953 [8].

Proof.

1°. Due to scale-invariance, for every $y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}$, we can take $\lambda_{i}=\frac{1}{y_{i}}$ and conclude that

$$
\begin{align*}
& \left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \sim\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \\
& \left(\frac{y_{1}^{\prime}}{y_{1}}, \ldots, \frac{y_{n}^{\prime}}{y_{n}}\right) \sim(1, \ldots, 1) \tag{10}
\end{align*}
$$

Thus, to describe the equivalence relation \sim, it is sufficient to describe the set of all the vectors $z=\left(z_{1}, \ldots, z_{n}\right)$ for which $z \sim(1, \ldots, 1)$. Similarly,

$$
\begin{align*}
& \left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \succ\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \\
& \left(\frac{y_{1}^{\prime}}{y_{1}}, \ldots, \frac{y_{n}^{\prime}}{y_{n}}\right) \succ(1, \ldots, 1) \tag{11}
\end{align*}
$$

Thus, to describe the ordering relation \succ, it is sufficient to describe the set of all the vectors $z=\left(z_{1}, \ldots, z_{n}\right)$ for which $z \succ(1, \ldots, 1)$.

Alternatively, we can take $\lambda_{i}=\frac{1}{y_{i}^{\prime}}$ and conclude that

$$
\begin{align*}
\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) & \succ\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \\
(1, \ldots, 1) & \succ\left(\frac{y_{1}}{y_{1}^{\prime}}, \ldots, \frac{y_{n}}{y_{n}^{\prime}}\right) \tag{12}
\end{align*}
$$

Thus, it is also sufficient to describe the set of all the vectors $z=\left(z_{1}, \ldots, z_{n}\right)$ for which $(1, \ldots, 1) \succ z$.
2°. The above equivalence involves division. To simplify the description, we can take into account that in the logarithmic space, division becomes a simple difference: $\ln \left(\frac{y_{i}^{\prime}}{y_{i}}\right)=$ $\ln \left(y_{i}^{\prime}\right)-\ln \left(y_{i}\right)$. To use this simplification, let us consider
the logarithms $Y_{i} \stackrel{\text { def }}{=} \ln \left(y_{i}\right)$ of different values. In terms of these logarithms, the original values can be reconstructed as $y_{i}=\exp \left(Y_{i}\right)$. In terms of these logarithms, we thus need to consider:

- the set S_{\sim} of all the tuples $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ for which $z=\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \sim(1, \ldots, 1)$, and
- the set S_{\succ} of all the tuples $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ for which $z=\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \succ(1, \ldots, 1)$.
We will also consider the set S_{\prec} of all the tuples $Z=$ $\left(Z_{1}, \ldots, Z_{n}\right)$ for which

$$
\begin{equation*}
(1, \ldots, 1) \succ z=\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \tag{13}
\end{equation*}
$$

Since the pre-ordering relation is total, for every tuple z, either $z \sim(1, \ldots, 1)$, or $z \succ(1, \ldots, 1)$, or $(1, \ldots, 1) \succ z$. In particular, this is true for $z=\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right)$. Thus, for every tuple Z, either $Z \in S_{\sim}$ or $Z \in S_{\succ}$ or $Z \in S_{\prec}$.
3°. Let us prove that the set S_{\sim} is closed under addition, i.e., that if the tuples $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ and $Z^{\prime}=\left(Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right)$ belong to the set S_{\sim}, then their component-wise sum

$$
\begin{equation*}
Z+Z^{\prime}=\left(Z_{1}+Z_{1}^{\prime}, \ldots, Z_{n}+Z_{n}^{\prime}\right) \tag{14}
\end{equation*}
$$

also belongs to the set S_{\sim}.
Indeed, by definition of the set S_{\sim}, the condition $Z \in S_{\sim}$ means that

$$
\begin{equation*}
\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \sim(1, \ldots, 1) \tag{15}
\end{equation*}
$$

Using scale-invariance with $\lambda_{i}=\exp \left(Z_{i}^{\prime}\right)$, we conclude that

$$
\begin{gather*}
\left(\exp \left(Z_{1}\right) \cdot \exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}\right) \cdot \exp \left(Z_{n}^{\prime}\right)\right) \sim \\
\left(\exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}^{\prime}\right)\right) \tag{16}
\end{gather*}
$$

On the other hand, the condition $Z^{\prime} \in S_{\sim}$ means that

$$
\begin{equation*}
\left(\exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}^{\prime}\right)\right) \sim(1, \ldots, 1) \tag{17}
\end{equation*}
$$

Thus, due to transitivity of the equivalence relation \sim, we conclude that

$$
\begin{gather*}
\left(\exp \left(Z_{1}\right) \cdot \exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}\right) \cdot \exp \left(Z_{n}^{\prime}\right)\right) \sim \\
(1, \ldots, 1) \tag{18}
\end{gather*}
$$

Since for every i, we have $\exp \left(Z_{i}\right) \cdot \exp \left(Z_{i}^{\prime}\right)=\exp \left(Z_{i}+Z_{i}^{\prime}\right)$, we thus conclude that

$$
\begin{equation*}
\left(\exp \left(Z_{1}+Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}+Z_{n}^{\prime}\right)\right) \sim(1, \ldots, 1) \tag{19}
\end{equation*}
$$

By definition of the set S_{\sim}, this means that the tuple $Z+Z^{\prime}$ belongs to the set S_{\sim}.
4°. Similarly, we can prove that the set S_{\succ} is closed under addition, i.e., that if the tuples $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ and $Z^{\prime}=$ $\left(Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right)$ belong to the set S_{\succ}, then their componentwise sum

$$
\begin{equation*}
Z+Z^{\prime}=\left(Z_{1}+Z_{1}^{\prime}, \ldots, Z_{n}+Z_{n}^{\prime}\right) \tag{20}
\end{equation*}
$$

also belongs to the set S_{\succ}.

Indeed, by definition of the set S_{\succ}, the condition $Z \in S_{\succ}$ means that

$$
\begin{equation*}
\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \succ(1, \ldots, 1) \tag{21}
\end{equation*}
$$

Using scale-invariance with $\lambda_{i}=\exp \left(Z_{i}^{\prime}\right)$, we conclude that

$$
\begin{align*}
\left(\exp \left(Z_{1}\right) \cdot\right. & \left.\exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}\right) \cdot \exp \left(Z_{n}^{\prime}\right)\right) \succ \\
& \left(\exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}^{\prime}\right)\right) \tag{22}
\end{align*}
$$

On the other hand, the condition $Z^{\prime} \in S_{\succ}$ means that

$$
\begin{equation*}
\left(\exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}^{\prime}\right)\right) \succ(1, \ldots, 1) \tag{23}
\end{equation*}
$$

Thus, due to transitivity of the strict preference relation \succ, we conclude that

$$
\begin{gather*}
\left(\exp \left(Z_{1}\right) \cdot \exp \left(Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}\right) \cdot \exp \left(Z_{n}^{\prime}\right)\right) \succ \\
(1, \ldots, 1) \tag{24}
\end{gather*}
$$

Since for every i, we have $\exp \left(Z_{i}\right) \cdot \exp \left(Z_{i}^{\prime}\right)=\exp \left(Z_{i}+Z_{i}^{\prime}\right)$, we thus conclude that

$$
\begin{equation*}
\left(\exp \left(Z_{1}+Z_{1}^{\prime}\right), \ldots, \exp \left(Z_{n}+Z_{n}^{\prime}\right)\right) \succ(1, \ldots, 1) \tag{25}
\end{equation*}
$$

By definition of the set S_{\succ}, this means that the tuple $Z+Z^{\prime}$ belongs to the set S_{\succ}.
5°. A similar argument shows that the set S_{\prec} is closed under addition, i.e., that if the tuples $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ and $Z^{\prime}=$ $\left(Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right)$ belong to the set S_{\prec}, then their componentwise sum

$$
\begin{equation*}
Z+Z^{\prime}=\left(Z_{1}+Z_{1}^{\prime}, \ldots, Z_{n}+Z_{n}^{\prime}\right) \tag{26}
\end{equation*}
$$

also belongs to the set S_{\prec}.
6°. Let us now prove that the set S_{\sim} is closed under the "unary minus" operation, i.e., that if $Z=\left(Z_{1}, \ldots, Z_{n}\right) \in$ S_{\sim}, then $-Z \stackrel{\text { def }}{=}\left(-Z_{1}, \ldots,-Z_{n}\right)$ also belongs to S_{\sim}.

Indeed, $Z \in S_{\sim}$ means that

$$
\begin{equation*}
\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \sim(1, \ldots, 1) \tag{27}
\end{equation*}
$$

Using scale-invariance with $\lambda_{i}=\exp \left(-Z_{i}\right)=\frac{1}{\exp \left(Z_{i}\right)}$, we conclude that

$$
\begin{equation*}
(1, \ldots, 1) \sim\left(\exp \left(-Z_{1}\right), \ldots, \exp \left(-Z_{n}\right)\right) \tag{28}
\end{equation*}
$$

i.e., that $-Z \in S_{\sim}$.
7°. Let us prove that if $Z=\left(Z_{1}, \ldots, Z_{n}\right) \in S_{\succ}$, then $-Z \stackrel{\text { def }}{=}$ $\left(-Z_{1}, \ldots,-Z_{n}\right)$ belongs to S_{\prec}.

Indeed, $Z \in S_{\succ}$ means that

$$
\begin{equation*}
\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \succ(1, \ldots, 1) \tag{29}
\end{equation*}
$$

Using scale-invariance with $\lambda_{i}=\exp \left(-Z_{i}\right)=\frac{1}{\exp \left(Z_{i}\right)}$, we conclude that

$$
\begin{equation*}
(1, \ldots, 1) \succ\left(\exp \left(-Z_{1}\right), \ldots, \exp \left(-Z_{n}\right)\right) \tag{30}
\end{equation*}
$$

i.e., that $-Z \in S_{\prec}$.

Similarly, we can show that if $Z \in S_{\prec}$, then $-Z \in S_{\succ}$.
8°. From Part 3 of this proof, it now follows that if $Z=$ $\left(Z_{1}, \ldots, Z_{n}\right) \in S_{\sim}$, then $Z+Z \in S_{\sim}$, that $Z+(Z+Z) \in$ S_{\sim}, etc., i.e., that for every positive integer p, the tuple

$$
\begin{equation*}
p \cdot Z=\left(p \cdot Z_{1}, \ldots, p \cdot Z_{n}\right) \tag{31}
\end{equation*}
$$

also belongs to the set S_{\sim}.
By using Part 6, we can also conclude that this is true for negative integers p as well. Finally, by taking into account that the zero tuple $0 \stackrel{\text { def }}{=}(0, \ldots, 0)$ can be represented as $Z+(-Z)$, we conclude that $0 \cdot Z=0$ also belongs to the set S_{\sim}.

Thus, if a tuple Z belongs to the set S_{\sim}, then for every integer p, the tuple $p \cdot Z$ also belongs to the set S_{\sim}.
9°. Similarly, from Parts 4 and 5 of this proof, it follows that

- if $Z=\left(Z_{1}, \ldots, Z_{n}\right) \in S_{\succ}$, then for every positive integer p, the tuple $p \cdot Z$ also belongs to the set S_{\succ}, and
- if $Z=\left(Z_{1}, \ldots, Z_{n}\right) \in S_{\prec}$, then for every positive integer p, the tuple $p \cdot Z$ also belongs to the set S_{\prec}.
10°. Let us prove that for every rational number $r=\frac{p}{q}$, where p is an integer and q is a positive integer, if a tuple Z belongs to the set S_{\sim}, then the tuple $r \cdot Z$ also belongs to the set S_{\sim}.

Indeed, according to Part $8, Z \in S_{\sim}$ implies that

$$
p \cdot Z \in S_{\sim} .
$$

According to Part 2, for the tuple $r \cdot Z$, we have either $r \cdot Z \in S_{\sim}$, or $r \cdot Z \in S_{\succ}$, or $r \cdot Z \in S_{\prec}$.

- If $r \cdot Z \in S_{\succ}$, then, by Part 9 , we would get

$$
p \cdot Z=q \cdot(r \cdot Z) \in S_{\succ},
$$

which contradicts our result that $p \cdot Z \in S_{\sim}$.

- Similarly, if $r \cdot Z \in S_{\prec}$, then, by Part 9 , we would get $p \cdot Z=q \cdot(r \cdot Z) \in S_{\prec}$, which contradicts our result that $p \cdot Z \in S_{\sim}$.
Thus, the only remaining option is $r \cdot Z \in S_{\sim}$. The statement is proven.
11°. Let us now use continuity to prove that for every real number x, if a tuple Z belongs to the set S_{\sim}, then the tuple $x \cdot Z$ also belongs to the set $S \sim$.

Indeed, a real number x can be represented as a limit of rational numbers: $r^{(k)} \rightarrow x$. According to Part 10, for every k, we have $r^{(k)} \cdot Z \in S_{\sim}$, i.e., the tuple

$$
\begin{gather*}
Z^{(k)} \stackrel{\text { def }}{=}\left(\exp \left(r^{(k)} \cdot Z_{1}\right), \ldots, \exp \left(r^{(k)} \cdot Z_{n}\right)\right) \sim \\
(1, \ldots, 1) \tag{32}
\end{gather*}
$$

In particular, this means that $Z^{(k)} \succeq(1, \ldots, 1)$. In the limit,

$$
\begin{equation*}
Z^{(k)} \rightarrow\left(\exp \left(x \cdot Z_{1}\right), \ldots, \exp \left(x \cdot Z_{n}\right)\right) \succeq(1, \ldots, 1) . \tag{33}
\end{equation*}
$$

By definition of the sets S_{\sim} and S_{\succ}, this means that $x \cdot Z \in$ S_{\sim} or $x \cdot Z \in S_{\succ}$.

Similarly, for $-(x \cdot Z)=(-x) \cdot Z$, we conclude that $-x \cdot Z \in S_{\sim}$ or $(-x) \cdot Z \in S_{\succ}$. If we had $x \cdot Z \in S_{\succ}$, then
by Part 7 we would get $(-x) \cdot Z \in S_{\prec}$, a contradiction. Thus, the case $x \cdot Z \in S_{\succ}$ is impossible, and we have $x \cdot Z \in S_{\sim}$. The statement is proven.
12°. According to Parts 3 and 11 , the set S_{\sim} is closed under addition and under multiplication by an arbitrary real number. Thus, if tuples Z, \ldots, Z^{\prime} belong to the set S_{\sim}, their arbitrary linear combination $x \cdot Z+\ldots+x^{\prime} \cdot Z^{\prime}$ also belongs to the set S_{\sim}. So, the set S_{\sim} is a linear subspace of the n-dimensional space of all the tuples.
13°. The subspace S_{\sim} cannot coincide with the entire n dimensional space, because then the pre-ordering relation would be trivial. Thus, the dimension of this subspace must be less than or equal to $n-1$. Let us show that the dimension of this subspace is $n-1$.
Indeed, let us assume that the dimension is smaller than $n-1$. Since the pre-ordering is non-trivial, there exist tuples $y=\left(y_{1}, \ldots, y_{n}\right)$ and $y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ for which $y \succ y^{\prime}$ and thus, $Z=\left(Z_{1}, \ldots, Z_{n}\right) \in S_{\succ}$, where $Z_{i}=\ln \left(\frac{y_{i}}{y_{i}^{\prime}}\right)$. From $Z \in S_{\succ}$, we conclude that $-Z \in S_{\prec}$.
Since the linear space S_{\sim} is a less than $(n-1)$-dimensional subspace of an n-dimensional linear space, there is a path connecting $Z \in S_{\succ}$ and $-Z \in S_{\prec}$ which avoids S_{\sim}. In mathematical terms, this path is a continuous mapping γ : $[0,1] \rightarrow R^{n}$ for which $\gamma(0)=Z$ and $\gamma(1)=-Z$. Since this path avoids S_{\sim}, every point $\gamma(t)$ on this path belongs either to S_{\succ} or to S_{\prec}.
Let \bar{t} denote the supremum (least upper bound) of the set of all the values t for which $\gamma(t) \in S_{\succ}$. By definition of the supremum, there exists a sequence $t^{(k)} \rightarrow \bar{t}$ for which $\gamma\left(t^{(k)}\right) \in S_{\succ}$. Similarly to Part 11 , we can use continuity to prove that in the limit, $\gamma(\bar{t}) \in S_{\succ}$ or $\gamma(\bar{t}) \in S_{\sim}$. Since the path avoids the set S_{\sim}, we thus get $\gamma(\bar{t}) \in S_{\succ}$.
Similarly, since $\gamma(1) \notin S_{\succ}$, there exists a sequence $t^{(k)} \downarrow \bar{t}$ for which $\gamma\left(t^{(k)}\right) \in S_{\prec}$. We can therefore conclude that in the limit, $\gamma(\bar{t}) \in S_{\succ}$ or $\gamma(\bar{t}) \in S_{\sim}$ - a contradiction with our previous conclusion that $\gamma(\bar{t}) \in S_{\succ}$.
This contradiction shows that the linear space S_{\sim} cannot have dimension $<n-1$ and thus, that this space have dimension $n-1$.
14°. Every $(n-1)$-dimensional linear subspace of an n dimensional superspace separates the superspace into two half-spaces. Let us show that one of these half-spaces is S_{\succ} and the other is S_{\prec}.
Indeed, if one of the subspaces contains two tuples Z and Z^{\prime} for which $Z \in S_{\succ}$ and $Z^{\prime} \in S_{\prec}$, then the line segment $\gamma(t)=t \cdot Z+(1-t) \cdot Z^{\prime}$ containing these two points also belongs to the same subspace, i.e., avoids the set S_{\sim}. Thus, similarly to Part 13, we would get a contradiction.
So, if one point from a half-space belongs to S_{\succ}, all other points from this subspace also belong to the set S_{\succ}. Similarly, if one point from a half-space belongs to S_{\prec}, all other points from this subspace also belong to the set S_{\prec}.
15°. Every ($n-1$)-dimensional linear subspace of an n dimensional space has the form $\alpha_{1} \cdot Z_{1}+\ldots+\alpha_{n} \cdot Z_{n}=0$
for some real values α_{i}, and the corresponding half-spaces have the form

$$
\alpha_{1} \cdot Z_{1}+\ldots+\alpha_{n} \cdot Z_{n}>0
$$

or

$$
\alpha_{1} \cdot Z_{1}+\ldots+\alpha_{n} \cdot Z_{n}<0
$$

The set S_{\succ} coincides with one of these subspaces. If it coincides with the set of all tuples Z for which

$$
\alpha_{1} \cdot Z_{1}+\ldots+\alpha_{n} \cdot Z_{n}<0
$$

then we can rewrite it as

$$
\left(-\alpha_{1}\right) \cdot Z_{1}+\ldots+\left(-\alpha_{n}\right) \cdot Z_{n}>0
$$

i.e., as

$$
\alpha_{1}^{\prime} \cdot Z_{1}+\ldots+\alpha_{n}^{\prime} \cdot Z_{n}>0
$$

for $\alpha_{i}^{\prime}=-\alpha_{i}$.
Thus, without losing generality, we can conclude that the set S_{\succ} coincides with the set of all the tuples Z for which $\alpha_{1} \cdot Z_{1}+\ldots+\alpha_{n} \cdot Z_{n}>0$. We have mentioned that

$$
\begin{gather*}
y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \succ y=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \\
\left(Z_{1}, \ldots, Z_{n}\right) \in S_{\succ}, \tag{34}
\end{gather*}
$$

where $Z_{i}=\ln \left(\frac{y_{i}^{\prime}}{y_{i}}\right)$. Thus,

$$
\begin{gather*}
y^{\prime} \succ y \Leftrightarrow \alpha_{1} \cdot Z_{1}+\ldots+\alpha_{n} \cdot Z_{n}= \\
\alpha_{1} \cdot \ln \left(\frac{y_{1}^{\prime}}{y_{1}}\right)+\ldots+\alpha_{n} \cdot \ln \left(\frac{y_{n}^{\prime}}{y_{n}}\right)>0 . \tag{35}
\end{gather*}
$$

Since $\ln \left(\frac{y_{i}^{\prime}}{y_{i}}\right)=\ln \left(y_{i}^{\prime}\right)-\ln \left(y_{i}\right)$, the last inequality is equivalent to

$$
\begin{gather*}
\alpha_{1} \cdot \ln \left(y_{1}^{\prime}\right)+\ldots+\alpha_{n} \cdot \ln \left(y_{n}^{\prime}\right)> \\
\alpha_{1} \cdot \ln \left(y_{1}\right)+\ldots+\alpha_{n} \cdot \ln \left(y_{n}\right) . \tag{36}
\end{gather*}
$$

Let us take exp of both sides; then, due to the monotonicity of the exponential function, we get an equivalent inequality

$$
\begin{gather*}
\exp \left(\alpha_{1} \cdot \ln \left(y_{1}^{\prime}\right)+\ldots+\alpha_{n} \cdot \ln \left(y_{n}^{\prime}\right)\right)> \\
\exp \left(\alpha_{1} \cdot \ln \left(y_{1}\right)+\ldots+\alpha_{n} \cdot \ln \left(y_{n}\right)\right) \tag{37}
\end{gather*}
$$

Here,

$$
\begin{align*}
& \exp \left(\alpha_{1} \cdot \ln \left(y_{1}^{\prime}\right)+\ldots+\alpha_{n} \cdot \ln \left(y_{n}^{\prime}\right)\right)= \\
& \exp \left(\alpha_{1} \cdot \ln \left(y_{1}^{\prime}\right)\right) \cdot \ldots \cdot \exp \left(\alpha_{n} \cdot \ln \left(y_{n}^{\prime}\right)\right), \tag{38}
\end{align*}
$$

where for every $i, e^{\alpha_{i} \cdot z_{i}}=\left(e^{z_{i}}\right)^{\alpha_{i}}$, with $z_{i} \stackrel{\text { def }}{=} \ln \left(y_{i}^{\prime}\right)$, implies that

$$
\begin{equation*}
\exp \left(\alpha_{i} \cdot \ln \left(y_{i}^{\prime}\right)\right)=\left(\exp \left(\ln \left(y_{i}^{\prime}\right)\right)\right)^{\alpha_{i}}=\left(y_{i}^{\prime}\right)^{\alpha_{i}} \tag{39}
\end{equation*}
$$

so

$$
\begin{equation*}
\exp \left(\alpha_{1} \cdot \ln \left(y_{1}^{\prime}\right)+\ldots+\alpha_{n} \cdot \ln \left(y_{n}^{\prime}\right)\right)=\left(y_{1}^{\prime}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(y_{n}^{\prime}\right)^{\alpha_{n}} \tag{40}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
\exp \left(\alpha_{1} \cdot \ln \left(y_{1}\right)+\ldots+\alpha_{n} \cdot \ln \left(y_{n}\right)\right)=y_{1}^{\alpha_{1}} \cdot \ldots \cdot y_{n}^{\alpha_{n}} . \tag{41}
\end{equation*}
$$

Thus, the condition $y^{\prime} \succ y$ is equivalent

$$
\begin{equation*}
\prod_{i=1}^{n} y_{i}^{\alpha_{i}}>\prod_{i=1}^{n}\left(y_{i}^{\prime}\right)^{\alpha_{i}} \tag{42}
\end{equation*}
$$

Similarly, we prove that

$$
\begin{align*}
y=\left(y_{1}, \ldots, y_{n}\right) & \sim y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \Leftrightarrow \\
\prod_{i=1}^{n} y_{i}^{\alpha_{i}} & =\prod_{i=1}^{n}\left(y_{i}^{\prime}\right)^{\alpha_{i}} . \tag{43}
\end{align*}
$$

The condition $\alpha_{i}>0$ follows from our assumption that the pre-ordering is monotonic.

The theorem is proven.

Acknowledgments

This work was supported in part by the National Science Foundation grant HRD-0734825. The authors are thankful to the anonymous referees for valuable recommendations.

REFERENCES

[1] A. B. Binder and D. L. Roberts, Criteria for Lunar Site Selection, Report No. P-30, NASA Appollo Lunar Exploration Office and Illinois Institute of Technology Research Institute, Chicago, Illinois, January 1970.
[2] M. Ehrgott and X. Gandibleux (eds.), Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, Berlin-HeidelbergNew York: Springer Verlag, 2002.
[3] I. Fountoulis, D. Mariokalos, E. Spyridonos, and E. Andreakis, "Geological criteria and methodology for landfill sites selection", Processings of the 8th International Conference on Environmental Science and Technology, Lemnos Island, Greece, September 8-10, pp. 200-207, 2003.
[4] A. Jaimes, A cyber-tool to optimize site selection for establishing an eddy covraince and robotic tram system at the Jornada Experimental Range, University of Texas at El Paso, December 2008.
[5] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Upper Saddle River, New Jersey: Prentice Hall, 1995.
[6] E. Kintisch, "Loss of carbon observatory highlights gaps in data", Science, vol. 323, pp. 1276-1277, 2009
[7] R. D. Luce, D. H. Krantz, P. Suppes, and A. Tversky, Foundations of Measurement, vol. 3, Representation, Axiomatization, and Invariance, San Diego, California: Academic Press, 1990.
[8] J. Nash, "Two-Person Cooperative Games", Econometrica, vol. 21, pp. 128-140, 1953.
[9] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Boca Raton, Florida: Chapman \& Hall/CRC, 2006.
[10] J. Pfanzangl, J., Theory of Measurement, New York: John Wiley, 1968.
[11] A. Roth, Axiomatic Models of Bargaining, Springer-Verlag, Berlin, 1979.
[12] Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Orlando, Florida: Academic Press, 1985.
[13] R. E. Steuer, Multiple Criteria Optimization: Theory, Computations, and Application, New York: John Wiley \& Sons, 1986.
[14] S. S. Stevens, "On the theory of scales of measurement", Science, vol. 103, pp. 677-680, 1946.

[^0]: Aline Jaimes, Craig Tweedie, Tanja Magoč, Vladik Kreinovich, and

