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Towards an Efficient Bisection of Ellipsoids

Paden Portillo, Martine Ceberio, and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA,
pportillo2@miners.utep.edu, {vladik,mceberio}@utep.edu

Abstract. Constraints are often represented as ellipsoids. One of the
main advantages of such constrains is that, in contrast to boxes, over
which optimization of even quadratic functions is NP-hard, optimization
of a quadratic function over an ellipsoid is feasible. Sometimes, the area
described by constrains is too large, so it is reasonable to bisect this area
(one or several times) and solve the optimization problem for all the sub-
areas. Bisecting a box, we still get a box, but bisecting an ellipsoid, we do
not get an ellipsoid. Usually, this problem is solved by enclosing the half-
ellipsoid in a larger ellipsoid, but this slows down the domain reduction
process. Instead, we propose to optimize the objective functions over the
resulting half-, quarter, etc., ellipsoids.

Keywords: constraints; ellipsoids; bisection; computational complexity

Constraints on a single variable. In many practical problems, we have prior
constraint on the values of different quantities. For each individual quantity x,
we usually know a lower bound z and an upper bound. Thus, we know that the
actual value of this quantity must lie within the interval [z, T].

Sometimes, we know several lower bounds; in this case, we take the largest of
them as z. Similarly, if we know several upper bounds, we can take the smallest
of these upper bounds as 7.

Correspondingly, when are looking for a value that satisfies a certain condi-
tion (e.g., when we are solving an equation), or if we are looking for the best
option (i.e., solving an appropriate optimization problem), we should take this
constraint into account. For example, when finding the optimal value of x, we
should optimize the corresponding objective function f(z) under the given con-
straint on x — i.e., under the constraint that z <z < 7.

Constraints on several variables: boxes naturally appear. Usually, we have several

different variables x1,...,z,. For each of these variables x;, we usually know a
lower bound z; and an upper bound Z;. Thus, we know that the actual value of
the tuple x = (x1,...,x,) belongs to the boz [z,,T1] X ... X [z,,Ty]. Such box

constrains and box uncertainty are typical for interval computations; see, e.g.,
[8,9,12].
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Problem with box constraints: computational complexity. The main problem with
box constraints is that already for quadratic objective functions

n n n
f(l‘l,...,l‘n):ao—i—é ai-xi—i—é E Qij - Ti - Ty,
i=1

i=1 j=1

optimizing them over a box is, in general, an NP-hard problem; see, e.g., [11, 15].
This problem is computational complex not for some exotic quadratic function:
as shown in [5], it is actually even NP-hard for the sample variance

1 «— 1 — ’
V($1,7$n):n2$?—<nzxz> .
i=1 i=1

Informal explanation of computational complexity. The above computational
complexity can be intuitively explained.

Indeed, a function of one variable f(x) attains its optimum (maximum or
minimum) on an interval [z, Z] either at one of its endpoints, or at an internal
point x € (z,Z]. If this optimum is attained at an internal point, then at this

d
point, a derivative d—f should be equal to 0. Thus, to find the largest and the

T
smallest value of a function f(z) on the interval [z, 7], it is sufficient to consider

daf

its value at the endpoints z and T and at a point  where i 0. When the

function f(x) is quadratic, its derivative is a linear function andx therefore (unless
we have a degenerate case) there is only one point where the derivative is equal to
0. So, to find the optimum of a quadratic function of one variable, it is sufficient
to consider at most three values x (two if the point where the derivative is 0 lies
outside the given interval).

For optimizing a function f(z1,...,x,) of several variables on the box z, <
z; < T;, the same trichotomy holds for each of the variables x;: with respect
to this variable, the optimum is attained either at one of the endpoints z; and
T; and at a point z where the corresponding partial derivative is equal to 0

af B
<5$i a 0')

For each variable, we have only 3 options, but together, they form 3x...x3 =
3" options: e.g., when z, = z,, we still have 3 different options for z2, etc. For
each of these 3" combinations of options, we have a system of linear equations
to solve — which is relatively easy (see, e.g., [4]), but the shear amount of such
cases makes this straightforward calculus-based algorithm exponential in time.
The NP-hardness results proves, in effect, that unless P=NP, no other algorithm
can solve this problem mush faster (in feasible polynomial time).

Ellipsoids: a solution to the computational complexity problem. One known so-
lution to the above computational complexity problem is to use ellipsoid con-
straints instead of the boxes, i.e., to use constrains of the type J(z1, ..., z,) < Jo,
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where

J(I’l,,zn):b0+2ble+22blj$1$]
i=1

i=1 j=1
For such constraints, optimizing a quadratic function f(z) means that:

— either the optimum is attained inside the ellipsoid, then we have a system

0
of linear equations / = 0;
(“)xi

— or the optimum is attained on the border J(z1,...,2,) = Jy of the ellipsoid.

In the second case, the Lagrange multiplier approach leads to the unconstrained
optimization of the auxiliary quadratic function f + X - (J — Jp), i.e., again, to
a solution of a system of linear equations. As a result, we get a solution z(\) as
a function of .

The only additional problem is to find a single variable A. This can be done
in a relatively straightforward way, by solving an equation J(xz(\)) = Jy with
one unknown A. The complexity of solving such an equation does not grow with
the size n of the problem.

Computations can be made even more explicit if we take into account that
if we have two quadratic forms, one of which is positive definite, we can move
both to a diagonal form by applying an appropriate linear transformation; this
linear transformation can be easily computed; see, e.g., [4]. Thus, when we apply
an appropriate linear transformations of the coordinates, in the new coordinates

n
Y1, - -, Yn, the ellipsoid J < Jy becomes simply a unit circle > y? = 1, and the
objective function takes the form =

n n
f(y17~-~7yn):w0+zwi'yi+zwii'yi2'
i=1 i=1

In this case, the Lagrange functional takes the form

fA=w0+Zwi'yi+an'yi2+>\' (Z?J?—1>7
i=1

=1 i=1

so equating partial derivatives of fy to 0 leads to w; 4+ 2wy; - y; +2A - y; = 0, i.e.,
i

——————— and the equation for A takes the following explicit form:
2 (wis +A)

toy; = —

n 2
w; _1
4 (wi +A)?
Because of this drastic reduction in computational complexity, ellipsoids have
been successfully used in many applications; see, e.g., [1-3,6,7, 13, 14].
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Need for bisection. When the optimized function is simple — e.g., linear or
quadratic — it does not matter how big or small is the area, the algorithm is
the same. However, when the objective function is more complex, then for small
areas, we can expand the objective function into Taylor series

flz,. ... zn) = ao—l—z ai-xi—l—zZaij-xiwj—l—zZZaijk-xiwj-xk—l—. e
i=1

i=1 j=1 i=1 j=1k=1

and, with reasonable accuracy, keep only quadratic terms in this expansion.
For larger areas, such an approximation may not necessarily be sufficiently ac-

curate. A similar problem occurs when we consider domains described by boxes.

For boxes, a solution to this problem is straightforward: we divide (“bisect”) the

box into two sub-boxes by dividing one of the side intervals [z;, T;] into two by a
. ~ T, + T . . . ~ .
line z; = x; def *’Tz (In n-dimensional space, the equation z; = ¥; describes
a plane.)

We can then try to estimate the optimum of the function over both sub-boxes,
and, if necessary, further bisect each of these two sub-boxes into sub-sub-boxes
[9,12].

Bisection for ellipsoids: a problem. With ellipsoids, we can apply a similar idea:
divide the ellipsoid into two halves by an appropriate plane. However, in com-
parison to boxes, here, we have an additional problem:

— when we bisect a box, both halves are boxes;
— however, a half of an ellipsoid is not an ellipsoid.

Thus, even when we know the algorithms for optimizing quadratic functions
over ellipsoids, we cannot use them to optimize functions over half- or quarter-
ellipsoids.

How this problem is solved now. At present (see, e.g., [2,3,10]), this problem
is solved by enclosing each of the resulting half-ellipsoids into an ellipsoid. This
procedure enables us to apply the same optimizations as before, but it comes
with a price — that the enclosures are larger than the halves and thus, the size of
the regions decreases slower that in the case of boxes — where, e.g., the volume
of an area decreases by 2 on each bisection step. Since the areas do not go as
fast, we will need more iterations (and thus, more computation time) to reach
the desired small size.

Our proposal. As an alternative, we propose to explicitly optimize quadratic
functions over half-, quarter-, etc. ellipsoids.

Indeed, suppose that after a small number of bisections d, we have the re-
sulting region. Each bisection j, 1 < j < d, corresponds to selecting a half-space.
Each half-space can be described by a linear inequality ¢;(z) < 0, with a lin-
ear function £;(x). As before, for each j, the optimum is attained either inside
the half-space or on its border, at a plane £;(z) < 0. Thus, to find the desired
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optimum, we must check all 2¢ subsets of the set {1,...,d}. For each of these
subsets S, we take all the planes ¢;(x) = 0 with j € S. The intersection of all
these planes with the original ellipsoid is still an ellipsoid of smaller dimension.
We then use the known ellipsoid-optimization algorithm to optimize the objec-
tive function over this smaller-dimension ellipsoid. The largest or smallest of
the desired values is the desired maximum or minimum of the original objective
function over our domain.

When d is small, the value 2¢ is also small, so we still get an efficient algo-
rithm.
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