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Abstract. In solving inverse problems, one of the successful methods of
determining the appropriate value of the regularization parameter is the
L-curve method of combining the corresponding soft constraints, when we
plot the curve describing the dependence of the logarithm x of the mean
square difference on the logarithm y of the mean square non-smoothness,
and select a point on this curve at which the curvature is the largest. This
method is empirically successful, but from the theoretical viewpoint, it
is not clear why we should use curvature and not some other criterion. In
this paper, we show that reasonable scale-invariance requirements lead
to curvature and its generalizations.

Keywords: soft constraints, inverse problems, regularization, L-curve,
curvature

1 Formulation of the Problem

Inverse problem: a brief reminder. In science and engineering, we are interested
in the state of the world, i.e., in the values of different physical quantities that
characterize this state. Some of these quantities we can directly measure, but
many quantities are difficult or even impossible to measure directly.

For example, in geophysics, we are interested in the density and other prop-
erties of the material at different depths and different locations. In principle, it
is possible to drill a borehole and directly measure these properties, but this is
a very expensive procedure, and for larger depths, the drilling is not possible at
all. To find the values of such difficult-to-measure quantities q = (q1, . . . , qn), we
measure the values of the auxiliary quantities a = (a1, . . . , am) that are related
to qi by a known dependence ai = fi(q1, . . . , qn), and then reconstruct the values
qj from these measurement results.

In the idealized situation when measurements are absolutely accurate, we
can then reconstruct the desired values qj from the system of m equations
a1 = f1(q1, . . . , qn), . . . , am = fm(q1, . . . , qn). In real life, measurements
are never 100% accurate, so the measured values ai are only approximately
equal to fi(q1, . . . , qn). Usually, it is assumed that the measurement errors
ai − fi(q1, . . . , qn) are independent normally distributed random variables with
0 means and the same variance; see, e.g. [3]. In this case, the constraint that the



values qj are consistent with the observations ai can be described as a constraint

s ≤ s0 on the sum s
def
=

m∑
i=1

(ai − fi(q1, . . . , qn))
2. The value s0 depends on the

confidence level: the larger s0, the more confident we are that this constraint
will be satisfied. For each value x0, the constraint x ≤ x0 is a soft constraint:
there is a certain probability that this constraint will be violated.

Often, this constraint is described in a logarithmic scale, as x ≤ x0, where

x
def
= ln(s).

Regularization: how to take into account additional constraints. Often, there are
additional constraints on qj . Usually, the values qj are more regular than ran-
domly selected values. Methods for taking these additional regularity constraints
into account are known as regularization methods; see, e.g., [4].

For example, in geophysics, the density values at nearby locations are usually
close to each other. In other words, the differences qj − qj′ corresponding to
nearby locations should be small.

This constraint can also be described in statistical terms: that there is a prior
distribution on the set of all the tuples, in which all the differences qj − qj′ are
independent and normally distributed with 0 mean and the same variance. In this
case, the constraint that the values qj are consistent with this prior distribution

can be also described as a constraint t ≤ t0 on the sum t
def
=

∑
(j,j′)

(qj − qj′)
2.

This constraint is also often described in a logarithmic space, as y ≤ y0, where

y
def
= ln(t).
We can combine the two constraints, e.g., by using the Bayesian statistics

to combine the prior distribution (describing the regularity of the actual values)
and the distribution corresponding to measurement uncertainty. For the result-
ing posterior distribution, the Maximum Likelihood method of determining the
optimal values of the quantities qj is then equivalent to minimizing the sum
s + λ · t, for some coefficient λ depending on the variance of the prior distribu-
tion.

There are also other more complex regularization techniques; see [4].

How to determine a regularization parameter. As we have mentioned, the actual
value of the regularization parameter depends on the prior distribution and is,
therefore, reasonably subjective. It is therefore desirable to find the value of this
parameter based on the data.

For each value of the parameter λ, we can find the corresponding solution
qj(λ), and, based on this solution, compute the values x(λ) and y(λ) of the
quantities x and y. These two values represent a point on a plane. Points cor-
responding to different values λ form a curve. In these terms, the question of
which value λ to choose can be reformulated as which point on the curve should
we choose?

In practice, often, this curve has a clear turning point, a point that is distinct
from others – as a point at which the curve “curves” the most. In such cases,



when we have an L-shaped curve, it is reasonable to select the turning point as
the point corresponding to the solution. This idea often leads to a good solution;
see, e.g., [1, 2].

In line with the above description, the desired point is selected as a point

at which the absolute value |C| of the curvature C =
x′′ · y′ − y′′ · x′

((x′)2 + (y′)2)3/2
takes

the largest possible value; here, as usual, x′ denotes the derivative
dx

dλ
, and x′′

denotes the second derivative of x with respect to the parameter λ.

Remaining open problem. Empirically, the method of selecting a point with
the largest curvature works well. It is therefore desirable to come up with a
theoretical justification for the use of curvature function – or at least for a class
containing the curvature function.

What we do in this paper. We provide such a justification: specifically, we show
that reasonable properties select a class of functions that include curvature.

2 Analysis of the Problem

Let us first analyze the invariance properties of curvature.

Scale-invariance. The numerical values of each quantity depend on the selection
of a measuring unit. For example, if instead of meters, we use centimeters, then
all numerical values get multiplied by 100. In general, if we select a new mea-
suring unit which is c times smaller than the previous one, then all numerical
values get multiplied by c.

If we change a measuring unit for a to a new one which is ca time smaller,
then the numerical values of ai and ai − fi(q1, . . . , qn) get multiplied by ca. As

a result, the sum s =
n∑

i=1

(ai − fi(q1, . . . , qn))
2 gets multiplied by c2a, and the

original value x = ln(s) changes to x+∆x, where we denoted ∆x
def
= ln(c2a).

Similarly, if we change a measuring unit for q to a new one which is cq time
smaller, then the numerical values of qj and qj − qj′ get multiplied by cq. As a
result, the sum t =

∑
(qj − qj′)

2 gets multiplied by c2q, and the original value

y = ln(t) changes to y +∆y, where we denoted ∆y
def
= ln(c2q).

Under these changes x(λ) → x(λ)+∆x and y(λ) → y(λ)+∆y, the derivatives
do not change – since ∆x and ∆y are constants – and thus, the curvature does
not change. Thus, the curvature is invariant under these scale transformations.

Invariance under re-scaling of parameters. Instead of the original parameter λ,
we can use a new parameter µ for which λ = g(µ). This re-scaling of a parameter
does not change the curve itself and thus, does not change its curvature. So, the
curvature is invariant under these scale transformations.



Our idea. Our main idea is to describe all the functions which are invariant with
respect to both types of re-scalings.

3 Main Result

Definition. By a parameter selection criterion (or simply criterion, for short),
we mean a function F (x, y, x′, y′, x′′, y′′) of six variables. We say that the pa-
rameter selection criterion F (x, y, x′, y′, x′′, y′′) is:

– scale-invariant if for all possible values ∆x and ∆y, we have

F (x+∆x, y +∆y, x
′, y′, x′′, y′′) = F (x, y, x′, y′, x′′, y′′);

– invariant w.r.t. parameter re-scaling if for every function g(z) and for the
functions x̃(µ) = x(g(µ)) and ỹ(µ) = y(g(µ)), we have

F (x̃, ỹ, x̃′, ỹ′, x̃′′, ỹ′′) = F (x, y, x′, y′, x′′, y′′).

Notation. By C(x, y, x′, y′, x′′, y′′), we denote the parameter selection criterion
corresponding to curvature.

Comment. Once a criterion is selected, for each problem, we use the value λ for
which the value F (x(λ), y(λ), x′(λ), y′(λ), x′′(λ), y′′(λ)) is the largest.

Main result. A parameter selection criterion which is scale-invariant and in-
variant w.r.t. parameter re-scaling if and only if it has the form

F (x, y, x′, y′, x′′, y′′) = f

(
C(x, y, x′, y′, x′′, y′′),

x′

y′

)
for some function f(C, z).

Proof.

1◦. For each tuple (x, y, x′, y′, x′′, y′′), by taking ∆x = −x and ∆y = −y, we con-
clude that F (x, y, x′, y′, x′′, y′′) = F (0, 0, x′, y′, x′′, y′′). Thus, we conclude that

F (x, y, x′, y′, x′′, y′′) = F0(x
′, y′, x′′, y′′), where we denoted F0(x

′, y′, x′′, y′′)
def
=

F (0, 0, x′, y′, x′′, y′′), i.e., we conclude that the value of the parameter selection
criterion does not depend on x and y at all.

In terms of the function F0, invariance w.r.t. parameter re-scaling means that
F0(x̃

′, ỹ′, x̃′′, ỹ′′) = F0(x
′, y′, x′′, y′′).

2◦. When we go from the original function x(λ) to the new function x̃(µ) =
x(g(µ)), the chain rule for differentiation leads to x̃′ = x′ · g′ and thus, x̃′′ =
x′′ · (g′)2 + x′ · g′′. Similarly, ỹ′ = y′ · g′ and ỹ′′ = y′′ · (g′)2 + y′ · g′′.

In particular, at the point where g′ = 1, we have x̃′ = x, x̃′′ = x′′ + x′ · g′′,
ỹ′ = y′, and ỹ′′ = y′′ + y′ · g′′, and thus, invariance w.r.t. parameter re-scaling
means that F0(x

′, y′, x′′ +x′ · g′′, y′′ + y′ · g′′) = F0(x
′, y′, x′′, y′′). This is true for



every possible values of g′′. In particular, for g′′ = −y′′

y′
, we have y′′ + y′ · g′′ = 0

and thus,

F0(x
′, y′, x′′, y′′) = F0

(
x′, y′, x′′ − x′ · y

′′

y′
, 0

)
.

Since

x′′ − x′ · y
′′

y′
= C · ((x

′)2 + (y′)2)3/2

y′
,

we thus conclude that

F0(x
′, y′, x′′, y′′) = h(C, x′, y′),

where

h(C, x′, y′)
def
= F0

(
x′, y′, C · ((x

′)2 + (y′)2)3/2

y′
, 0

)
.

For the new function h(C, x′, y′), since the curvature is invariant w.r.t. pa-
rameter re-scaling, invariance means that h(C, x̃′, ỹ′) = h(C, x′, y′). This means
that

h(C, x′, y′) = h(C, x′ · g′, y′ · g′).

This is true for every possible values of g′. In particular, for g′ =
1

x′ , we have

x′ · g′ = 1 and thus,

F (x, y, x′, y′, x′′, y′′) = F0(x
′, y′, x′′, y′′) = h(C, x′, y′) = h

(
C, 1,

y′

x′

)
,

i.e., F (x, y, x′, y′, x′′, y′′) = f

(
C,

y′

x′

)
for f(C, z)

def
= h(C, 1, z).

The statement is proven.
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