
Towards Predictions of Large Dynamic Systems’ Behavior using

Reduced-Order Modeling and Interval Computations*

Leobardo Valera1, Angel Garcia1, Afshin Gholamy2 Martine Ceberio1 and Horacio Florez1

Abstract— The ability to conduct fast and reliable simulations
of dynamic systems is of special interest to many fields of
operations. Such simulations can be very complex and, to be
thorough, involve millions of variables, making it prohibitive
in CPU time to run repeatedly for many different configu-
rations. Reduced-Order Modeling (ROM) provides a concrete
way to handle such complex simulations using a realistic
amount of resources. However, uncertainty is hardly taken into
account. Changes in the definition of a model, for instance,
could have dramatic effects on the outcome of simulations.
Therefore, neither reduced models nor initial conclusions could
be 100% relied upon. In this research, Interval Constraint
Solving Techniques (ICST) are employed to handle and quantify
uncertainty. The goal is to identify key features of a given
dynamical phenomenon in order to be able to propagate the
characteristics of the model forward and predict its future
behavior to obtain 100% guaranteed results. This is specifically
important in applications, as a reliable understanding of a
developing situation could allow for preventative or palliative
measures before a situation aggravates.

I. INTRODUCTION

The ability to make observations of natural phenomena

has played a fundamental role in our world. From what we

observe, we simulate models to help us understand how these

phenomena vary over time and predict their future behavior

or characteristics. Differential equations (PDEs or ODEs)

help us represent the time-dependance of these dynamic

systems. Numerical approaches to solving these differential

equations require discretization, which could involve millions

of variables, and as a result, so-called high-fidelity models

yield significant CPU time issues. To overcome these issues,

Reduced-Order Modelling (ROM) strategies are employed,

which allow searching for the solutions of a given problem

in a subspace whose dimension is much smaller than the

dimension of the high-fidelity original model.

In addition, when we do not initiate simulations but rather

we are simply making an observation (or observations) of an

unfolding phenomenon, it is valuable to be able to understand

it “on the fly” and predict its future behavior. In such

situations, observations provide values of the variables of

the high-fidelity model (or Full-Order Model, FOM) while

we wish we could use ROM to truly conduct “on-the-fly”

*This work was supported by The Army Research Lab and The National
Science Foundation, CCF award 0953339

1 Leobardo Valera, Angel Garcia and Martine Ceberio are
with the Computer Science Department. 2Afshin Gholamy is with
the Civil Engineering Department, College of Engineering, The
University of Texas at El Paso, 500 W. University Ave, El Paso,
TX 79969-0518, USA {lvalera,mceberio}@utep.edu,
afgarciacontreras@miners.utep.edu,
agholamysalehabady@miners.utep.edu

computations. In addition, things can also get challenging as

observations are never 100% accurate and therefore we must

also deal with uncertainty. This uncertainty propagates over

time in dynamic systems, which could impact their future

behavior and characteristics.

In this article, we show how understanding a dynamic phe-

nomenon “on the fly” is possible, despite its possibly large

size and embedded uncertainty. We demonstrate how we can

translate FOM data into ROM data and combine Interval

Constraint Solving Techniques (ICST) with Reduced-Order

Modeling techniques to properly account for both challenges:

size and uncertainty.

II. BACKGROUND

Modelling real-life phenomena can result in very large

(most likely) nonlinear systems of equations that need to

be solved. One way to solve these problems is to find the

zeroes of large-dimensional functions using some real-valued

solvers, e.g. Newton’s method. The convergence of the real-

valued solvers depends on several factors: selection of the

initial point, continuity of the partial derivatives, condition

on the Jacobian or the Hessian matrix, among others. To

overcome these issues, the solution can be sought on a

subspace where the convergence conditions are met, hence

also reducing the size of the problem to be solved: such

general approach is called Reduced-Order Modeling [14],

[15]. We review it in what follows (subsection II-A).

Another challenge with solving dynamical systems is that

we often assume that the models are 100% accurate. This

is seldom the case. Moreover, in the specific case that we

tackle in this article, where we want to identify the type of

dynamical phenomenon that we observe, we have to deal

with the inherent inaccuracy of observations. As a result,

if we are to solve such problems, we need to be able to

handle uncertainty, and to quantify it, to be able to assess

the quality of our solutions. Techniques that allow handling

and quantifying uncertainty are reviewed in Subsections II-

A.1 and II-A.2.

A. Reduced-Order Modeling (ROM)

Let us consider a system of equations:

F(x) = 0 (1)

where, F : Rn → R
n. The main idea of ROM is to find a

solution x in a subspace W ⊂ R
n, whose dimension k ≪ n.

There exists a n×k matrix Φ, whose columns are the basis

vectors of W . This matrix can be redefined as an operator

T : Rk →R
n



where T (y) =Φy. Since x ∈W , it can be defined as the linear

combination of the columns of Φ:

x = Φy (2)

Substituting (2) in (1), the nonlinear system becomes

overdetermined.

F̄(y) = F(Φy) = 0

R
k T

✲ R
n

R
n

F

❄

F̄

✲

Let us illustrate the ROM through the following example.

Example 1: Consider the following nonlinear system of

equations:















(x2
1 + x1 − 2)(x2

2 + 1) = 0

(x2
2 − 5x2+ 6)(x2

1 + 1) = 0

(x2
3 − 2x3− 3)(x2

4 + 1) = 0

(x2
4 − 4)(x2

3 + 1) = 0

(3)

We can reduce (3) searching a solution in the subspace W

spanned by Φ = {(2,4,−2,0)T ;(0,0,0,−4)T} .















(16y2
1 + 1)(4y2

1 + 2y1 − 2) = 0

(4y2
1 + 1)(16y2

1+ 20y1 + 6) = 0

(16y2
2 + 1)(4y2

1 + 4y1 − 3) = 0

(4y2
1 + 1)(16y2

2 − 4) = 0

(4)

The system (4) has two solutions Y1 = (0.5,0.5)T and Y2 =
(0.5,−0.5)T . We can obtain the solutions of (3) by plugging

Y1 and Y2 into (2). Note that the nonlinear system (3) has 16

solutions, but only two of those is given by ROM.

For more information on how to obtain a reduced basis

on a nonlinear problems refer to [9], [10], [11], [12].

1) Computations with Intervals: Let us make a couple of

adjustments. Hereafter, we will be using intervals to refer to

closed real-value bounded intervals as opposed to the more

commonly used floating-point-bounded intervals.

In this work, an interval X is defined as follows:

X = [X , X ] = {x ∈ R : X ≤ x ≤ X}. (5)

Since x ∈ X is equal to X ≤ x ≤ X , and y ∈ Y is defined as

Y ≤ y ≤Y the following operations are inferred based on its

infimum and supremum:

• Addition: X +Y = [X +Y ,X +Y ]
• Substraction: X −Y = [X −Y ,X −Y ]
• Multiplication: X ·Y = [minS,maxS], where S =
{XY ,XY ,XY ,XY}

As it is shown, combining intervals with addition, subtrac-

tion, and multiplication, results in another interval. However,

this is not always the case. For instance, the division of

an interval by another one that contains 0 results in two

disjoint intervals. To avoid such cases that compromise the

nature of traditional interval computations (according to

which combining intervals should result in an interval), we

generalize the operations of two intervals as follows: ∀X ,Y
intervals,

X ⋄Y =�{x⋄ y, where x ∈ X and y ∈ Y} (6)

where ⋄ stands for any arithmetic operator, including divi-

sion, and � represents the hull operator.

Essentially, when carrying out more general computations

involving intervals, e.g., computing the interval value of a

given function f :Rn →R on interval parameters (or a mix of

interval and real-valued parameters), we have the following

property:

f (X1, . . . ,Xn)⊆�{ f (x1, . . . ,xn),where

x1 ∈ X1, . . . ,xn ∈ Xn} (7)

where f (X1, . . . ,Xn) represents the range of function f over

the domain X1 × ·· · × Xn and �{ f (x1, . . . ,xn), where x1 ∈
X1, . . . ,xn ∈ Xn} represents the smallest closed interval en-

closing this range. Computing the exact range of f over

intervals is therefore a very hard problem and instead, we

approximate the range of f over domains using what we

call an interval extension of f , which is in fact a surrogate

interval function F .

Interval extensions of a given function f have to satisfy

the following property:

f (X1, . . . ,Xn)⊆ F(X1, . . . ,Xn) (8)

which to some extent would allow F to be the function that

maps any input to the interval [−∞,+∞]. More pragmatically,

the aim is to identify a function F that does not dramatically

overestimate the range of our original function f (the closer

to the range the better of course, but cost of achieving better

range is also an issue).

f ,g
0 1

f : x 7→ x3 − x4

g : x 7→ −x2((x−0.5)2 −0.25)
Evaluation of f

Evaluation of g

Fig. 1. Evaluation of the natural extensions of two expressions of the same
real function f .

There are many interval extensions. The most common is

the so-called natural extension, which is a simple interval

extension of the syntactical expression of f : arithmetic

operations are evaluated using interval rules as shown above,

and any other single operator – e.g., power – has its own

interval extension; see [1] for more details. Other extensions

include Trombettoni et Al.’s occurrence grouping approach.

In general, two different interval extensions of the same

real function f are different Fig. 1.

Important note: in practice, we conduct interval com-

putations with floating-point-bounded intervals. What this



changes is that each time an interval computation is carried,

is the bounds of the resulting interval are not floating points,

they are outward rounded (to the closest outward floating

point), to guarantee that the range of the interval computation

still be enclosed.

In this work, we use interval computations provided in

RealPaver [3] and the natural extensions that this software

provides.

2) How to Solve Nonlinear Equations with Intervals?:

The premise of our approach is to replace all real valued

computations with interval-based computations by abstract-

ing real-valued parameters into interval parameters. In this

subsection, we give the reader an overview of the way

we solve a nonlinear system of equations using interval

computations. In particular, it does not involve picking a

starting point, and therefore, is much more robust. It actually

is guaranteed to be complete: all solutions will be retrieved,

but most importantly, if there is no solution (our solver does

not return solutions), we know for sure that it is because

there is no solution, and it is not because our solver may or

may not have failed to retrieve a solution.

We choose to solve nonlinear equations using interval

constraint solving techniques. Constraint solving techniques

allow to solve systems of constraints. Generally speaking, a

constraint describes a relationship that its variables need to

satisfy. A solution of a constraint is an assignment of values

to its variables such that the relationship is satisfied.

In our case, each of our nonlinear equations

fi(x1, . . . ,xn) = 0 of the system to be solved is a constraint:

it establishes a relationship that the values of the variables

should satisfy, in this case so that fi(x1, . . . ,xn) be equal to

0. Our system of nonlinear equations is therefore a system

of constraints and our goal is to find values of the variables

of this system that are such that: ∀i, fi(x1, . . . ,xn) = 0.

Constraint solving techniques allow us to identify all

values of the parameters that satisfy the constraints. Interval

constraint solving techniques [4], [5] produce a solution set

(set of the solutions of the constraint system) that is interval

in nature: it is a set of multi-dimensional intervals (or boxes

whose dimension is n, the number of variables): this set

is guaranteed to contain all the solutions of the constraint

problem (in our case, of the nonlinear system of equations).

The guarantee of completeness provided by interval con-

straint solving techniques comes from the underlying solving

mode: a branch-and-bound [6] (or branch-and-prune for

faster convergence [7]) approach that uses the whole search

space as a starting point and successively assess the likeli-

ness of finding solutions in the given domain (via interval

computations) and possibly (if Branch and Prune) reduce it,

and discard domains that are guaranteed not to contain any

solution.

Example 2: Let us consider the following equation:

2x = y2, with x ∈ [−5,5], y ∈ [−2,2] (9)

In order to solve this problem we have to following a

process that can be divided in two stages: Contraction and

Bisection.

• Contraction:

– x = [−5,5], then 2[−5,5] = [−10,10]
– y = [−2,2], then [−2,2]2 = [0,4]
– since 2x = y2, we have to take the intersection:

[0,4]∩ [−10,10] = [0,4]. Finally, using the inverse

functions we determinate which the new values of

x and y are.

– [0,4]/2 = [0,2], The new value of x = [0,2].
–

√

[0,4] = [−2,2], then the new value of y= [−2,2].
In this case, there was not contraction in the vari-

able y.

• Bisection: In this example, since there was not contrac-

tion in the variable y, we can consider y as a disjoint

union, for example, y = y1 ∪ y2 = [−2,0]∪ [0,2], and

repeat the process for x and y1, and for x and y2. A

good criteria of bisecting can be found in [8].

• We repeat the whole process discarding the intervals no

containing any solution and stopping when the width of

the intervals are less that a tolerance previously defined.

Fig. 2 illustrate one step of contraction using the HC4-

revise contractor [3].

=

×

2 x

ˆ

y 2[2,2] [−5,5]

[−10,10]

[−2,2] [2,2]

[0,4]

=

×

2 x

ˆ

y 2[2,2] [−5,5]

[−10,10]

[−2,2] [2,2]

[0,4][0,4] [0,4]

[0,2]

Fig. 2. One contraction step for (9) using ICST’s HC4 contractor

III. HANDLING UNCERTAINTY IN DYNAMICAL

SYSTEMS

In this section, we do not set ourselves to solve simulations

of dynamical systems whose input parameters and other

features we know. We set ourselves to solve the corollary

problem of identifying the “flavor” (features, parameters)

of a known dynamical phenomenon, as it is unfolding.

Such identifications are based on observations of the said

phenomenon. Therefore, as observations are expected to

be inaccurate, we aim to solve large dynamical systems

involving uncertainty, on the fly.

In order to do this, we combine ROM techniques with

ICST and observe how efficient our approach is to solve



dynamic systems with some degree of uncertainty. We show

how we can translate FOM observations into working ROM

data. We also show that since ICST are based on solving

constraints “independently of each other” (in the sense that

we do not need a jacobian of the whole system to be able

to run the solving techniques), we do not need to know

the initial conditions or the input parameters to solve a

system: we just need to have access to some information,

which could be an observation, or observations, of the actual

phenomenon.

As a result, we show that our ability to handle uncertainty

further allows us to make predictions. More specifically, we

prove that even in the presence of uncertainty in some part

of the data we are able to identify the values of the input

parameters and unfold the dynamic behavior further in time.

A. Uncertainty in observations

Here, we simulate having observations (with uncertainty)

about a given type of dynamical phenomenon, and we will

quantify the relationship between the quality of data and

the quality of the prediction. We set values v(ti) = [vi,vi]
to simulate the uncertainty in some observations in times

ti. We then set to figure out the relationship between the

number of data points with uncertainty and the accuracy of

the prediction of the parameters. We illustrate our work on

a set of examples.

1) Lotka-Volterra: Consider a particular case of the

Lotka-Volterra problem, which involves a model of a

predator-prey system. We use the following equations to

describe this problem:
{

v′ = θ1v(1−w), v(0) = v0 = 1.2
w′ = θ2w(v− 1), w(0) = w0 = 1.1

(10)

where v and w respectively represent the amount of preys

and predators. In this particular example, the growth rate of

the first species reflects the effect the second species has on

the population of the first species (θ1). Similarly, the growth

rate of the second species reflects the effect the first species

has on the population of the second species (θ2). The system

was integrated from t0 = 0 to tm = 10. Numerical experiments

were carried out with a constant step size h= 0.1. Ranges for

the parameters θ1 = [2.95,3.05] and θ2 = [0.95,1.05] were

used as input.

After discretization, the nonlinear system of differential

equations (10) can be written as the function F : R2n →R
2n,

with n = 100

F



















v1

v2

.

.

.

vn

w1

w2

.

.

.

wn



















=



















v2 − v0 −2hθ1v1(1−w1)
w2 −w0 −2hθ2w1(v1 −1)
v3 − v3 −2hθ1v2(1−w2)
w3 −w1 −2hθ2w2(v2 −1)

.

.

.

vn − vn−2 −2hθ1vn−1(1−wn−1)
wn −wn−2 −2hθ2wn−1(vn−1 −1)

vn − vn−1 −hθ1vn(1−wn)
wn −wn−1 −hθ2wn(vn −1)



















(11)

To simplify the notation, let us denote V =
(v1,v2, · · · ,vn,w1,w2, · · · ,wn)

T .

Firstly, we solve the nonlinear system of equations (11)

F(V ) = 0 using ICST. Due to the large number of unknowns

and the uncertainty on θ1 and θ2, we obtain a solution with

overestimation in each of the unknowns, see Fig. 3.

0 1 2 3 4 5 6 7 8 9 10

Time Domain (t)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

v(t)
w(t)

Fig. 3. ICST and Full-Order Modeling

To reduce the time it takes to run such predictions and

to reduce at the same time the overestimation when (11) is

solved, we search the solution of it on a reduced subspace W

whose basis will be the columns of a matrix Φ, i.e., V =Φp.

F(Φp) = 0 (12)

Using ROM and ICST (12), the computing time is signifi-

cantly reduced from 75ms to 17ms, which represents 22% of

FOM runtime. This is due to smaller number of unknowns

in ROM. see Fig. 4.

0 1 2 3 4 5 6 7 8 9 10

Time Domain (t)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Fig. 4. ICST and Reduced-Order Modeling

We showed that we are able to obtain an enclosure of the

solution of a nonlinear system of differential equations when

we are dealing with uncertainty on one or more variables.

The question that needs to be addressed is whether or not

we could obtain the values of the parameters by knowing a

basis Φ of a subspace W . In the following examples, let us

set the parameters θ1 and θ2 as unknowns and v50 and w50

as known values:

Φ(50, :)p = v50 = [0.76,0.78]
Φ(150, :)p = w50 = [0.96,1.04]

F(Φp) = 0

(13)

where Φ(50, :) and Φ(150, :) are respectively rows 50 and

150 of the matrix Φ.

When (14) is solved the overestimation of the solution

has been reduced, see Fig 5, and the values of parameters

are close to the original ones θ1 = [2.92,3.05] and θ2 =
[1.048,1.051].

Now we set two more data



0 1 2 3 4 5 6 7 8 9 10

Time Domain (t)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
θ1 = [2.92, 3.05], θ2 = [1.048, 1.051]

Fig. 5. Uncertainty associated with one observation

Φ(50, :)p = v50 = [0.76,0.78]
Φ(150, :)p = w50 = [0.96,1.04]

Φ(70, :)p = v70 = [1.20,1.28]
Φ(170, :)p = w70 = [0.97,1.10]

F(Φp) = 0

(14)

We see in Fig 6,

0 1 2 3 4 5 6 7 8 9 10

Time Domain (t)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
θ1 = [2.925, 3.05], θ2 = [1.049, 1.051]

Fig. 6. Uncertainty associated with two observations

that the behavior of the solution does not change, and the

value of the parameters barely change. v50,v70,w50,w70, now

the value of the predicted values were θ1 = [2.925,3.05] and

θ2 = [1.049,1.051].
The experiment is repeated several times. Each time a new

observation is set. The first step is to set the observation

corresponding with t = 0.05, next with t = 0.05 and t = 0.1,

and so on, until having a total of 38 observations set. In

TABLE I, it can be observed that the behavior of the values

of the parameters θ1 and θ2 depends on the number of

set observations. each row of the table corresponds to new

observations that are added.

The following example illustrates how problems with un-

certainty and highly sensitive parameters can still be handled

with ICST.

2) Gaussian Model: Consider the σ -parameter differen-

tial equation

y′+
x

σ2
y = 0, y(0) =

1

σ
√

2π
(15)

The analytical solutions of (15) is given for the family of

functions fσ (x) =
1

σ
√

2π
e
− x2

2σ2 . In Fig. 7 we have the graph

of three members of the family of solutions corresponding

to σ = 1, σ =
√

2, and σ =
√

3.

Although
√

2∈ [1,
√

3], the function f√2(x) is not bounded

by f1(x) and f√
3
(x), so we cannot bound all the members

of the family between the the graph of the solution corre-

sponding to the lower bound and the upper bound of the

parameters.

vi, wi [θ1,θ1] [θ2,θ2]

v5, w5 [2.949700,3.050500] [1.049500,1.050500]
v10, w10 [2.949500,3.050800] [1.049500,1.050500]
v15, w15 [2.949600,3.050300] [1.049500,1.050500]
v20, w20 [2.950900,3.049000] [1.049100,1.050900]
v25, w25 [2.951800,3.050000] [1.049400,1.050600]
v30, w30 [2.951800,3.050000] [1.049300,1.050800]
v35, w35 [2.952000,3.049700] [1.049400,1.050600]
v40, w40 [2.949900,3.050500] [1.049400,1.050600]
v45, w45 [2.950000,3.050400] [1.049400,1.050600]
v50, w50 [2.950400,3.050000] [1.049200,1.050800]
v55, w55 [2.950400,3.050000] [1.049200,1.050800]
v60, w60 [2.951100,3.050200] [1.049200,1.050800]
v65, w65 [2.951300,3.049300] [1.049300,1.050700]
v70, w70 [2.951200,3.049300] [1.049400,1.050600]
v75, w75 [2.951300,3.049900] [1.049400,1.050600]
v80, w80 [2.951300,3.049900] [1.049400,1.050600]
v85, w85 [2.950900,3.049900] [1.049500,1.050500]
v90, w90 [2.950900,3.049900] [1.049500,1.050500]
v95, w95 [2.950900,3.049800] [1.049500,1.050500]

TABLE I

NUMBER OF VARIABLES WITH UNCERTAINTY VERSUS THE THE VALUE

OF THE PARAMETERS θ1 AND θ2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ
2 = 1

σ
2 = 2

σ
2 = 3

Fig. 7. Solution of (15) for σ = 1, σ =
√

2, and σ =
√

3

To know the behavior of all members of the family, we

can solve the system of equations that comes from the

discretization of (15) using ICST and taking σ = [1,
√

3].
We discretize the domain [0,2] in 200 observatiuons so we

have to solve a linear system of 200 unknowns with 200

equations.

The black external lines in Fig. 8 correspond to the lower

bound and the upper bound of the interval solution. Observe

how the lower and upper bound enclose the solutions for σ =
1, σ =

√
2, and σ =

√
3. We have guaranteed that there is

not a σ ∈ [1,
√

3] that is not bounded by the interval solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

σ
2 = 1

σ
2 = 2

σ
2 = 3

Lower bound
Upper bound

Fig. 8. interval Solution for σ = [1,
√

3]

Let us see how we can determine the parameters knowing

the value of the function for some t. If we set the variable

y117 = [0.2003,0.2036], which is close to the intersection of



the members of the family corresponding to σ = 1 and σ =√
2. When we solve the system of equations the parameter

σ = [0.8641975308641979,2], which encloses σ =
√

2 and

σ = 1, see Fig 9.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
σpred = [0.8642, 2.0000]

y117

σ
2 = 2

Lower bound
Upper bound

Fig. 9. Uncertainty associated with the observation y117 = [0.2003,0.2036]

Then, if we also fix the variable y156 =
[0.1535,01547], which is close to the intersection

of the graphs of f√
2
(x) and f√3(x). In this case

σ = [1.372854139434509,1.435761414626781], which

encloses the value of σ =
√

2, see Fig 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
σpred = [1.372854139434509, 1.435761414626781]

y117

y156

σ
2 = 1

σ
2 = 2

σ
2 = 3

Lower bound
Upper bound

Fig. 10. Uncertainty associated with the observations y117 =
[0.2003,0.2036] and y156 = [0.1535,0.1547]

Note: Because we used numerical constraint solving tech-

niques [11], [12] to narrow down the possible values of the

unknowns of the constraint systems we solves, our approach

is sound regardless of whether the constraint system models

a simulation (identifying the whole solution space vector); or

for predictions (identifying the input parameters, the initial

conditions, or any other value of interest as is our focus in

this article).

IV. CONCLUSIONS

In this article, starting from the problem of solving

large dynamical systems while handling uncertainty using

Reduced-Order Modeling, we set to solving the corollary

problem of identifying specific input parameters of unfold-

ing dynamical systems under observation. We showed that

we can, not only use ROM techniques, but also Interval

Constraint Solving techniques to solve such problems. We

demonstrated the ability of these techniques and the quality

of the results in a few nonlinear problems chosen for the

features they exhibit (nonlinearity, solving difficulty). We

observed that non only we could translate observation data

from a Full-Order Model into the solving process on a

Reduced-Order Model and that uncertainty quantification

did not suffer from this translation. Future work includes

integrating outliers in observations and designing techniques

to handle them.
ACKNOWLEDGMENT

This work was supported by Stanford’s Army High-

Performance Computing Research Center funded by the

Army Research Lab, and by the National Science Foundation

award #0953339.

The authors would like to thank Professor Oscar Neira

from the Universidad Metropolitana, Caracas, Venezuela, for

his expert advice and suggestion of some examples presented

in this paper.

REFERENCES

[1] Moore, R. E., Kearfott, R. B., and Cloud, M. J., Introduction to

Interval Analysis,1st edition, SIAM, Philadelphia, 2009.
[2] Benhamou, F., Goualard, F., Granvilliers, V., and Puget, J., Revising

Hull and Box Consistency. Proceedings of the 1999 International
Conference on Logic Programming. MIT Press, 1999

[3] Granvilliers, L. and Benhamou, F., RealPaver: An Interval Solver us-
ing Constraint Satisfaction Techniques.. ACM Trans. on Mathematical
Software 32(1), 138–156, 2006.

[4] Mackworth, A. K., Consistency in Networks of Relations Artificial
Intelligence, 8, 1, 99–118, 1977.

[5] Jaffar, J. and Maher, M., Constraint Logic Programming: a Survey

The Journal of Logic Programming, 19/20, 503–58, 1994.
[6] Kearfott, R. B., Verified Branch and Bound for Singular Linear

and Nonlinear programs: An epsilon-inflation process, April 2007.
Available from the author.

[7] Caroa, S., Chablata, S., Goldsztejnb, A., Ishiic, D., and Jermannd, C.,
A branch and Prune Algorithm for the Computation of Generalized

Aspects of Parallel Robots Artificial Intelligence, 211, 34, 2014.
[8] Kearfott, R. B. and Kreinovich, V., Where to bisect a box? A

Theoretical Explanation of the Experimental Results, In: G. Alefeld
and R.A. Trejo (eds.), Proc. MEXICON’98, Workshop on Interval
Computations, 4th World Congress on Expert Systems, Mexico City,
México,1998.

[9] Schilders, W. H. and Vorst, H. A., Model Order Reduction: Theory,

Research Aspects and Applications. Springer Science & Business
Media, 2008.

[10] White, J., A Trajectory Piecewise-Linear Approach to Model Order

Reduction and Fast Simulation of Nonlinear Circuits and Microma-
chined Devices IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 22(2), 155–170, 2003.

[11] Kelly, C. T., Reduction of Model Order Based on Proper Orthogonal

Decomposition for Lithium-Ion Battery Simulations, Journal of the
Electrochemical Society, 156 (2009), pp. A154–A161.

[12] Willcox, K. and Peraire, J., Balanced Model Reduction Via the Proper

Orthogonal Decomposition. AIAA journal, 40(11):2323–2330, 2002.
[13] Lodwick, A., Bassanezy, R. C., and de Barros, L., A First Course in

Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics. Theory
and Applications, Studies in Fuzziness and Soft Computing, Springer,
Vol 347, Germany, 2017.

[14] Valera, L. Ceberio, M., Model-Order Reduction Using Interval

Constraint Solving Techniques, Journal of Uncertainty Systems, Vol
11. 2017.

[15] Valera, L., Ceberio, M., Model-Order Reduction Using Interval

Constraint Solving Techniques, 7th International Workshop on Reliable
Engineering Computing (REC), 2016.


