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Abstract Computer simulations of dynamic systems are really important to bet-
ter understand some processes or phenomena without having to physically execute
them, and/or to make offline decisions, or decisions that do not need immediate,
“on-the-fly” answers in general. However, given a set of equations describing a dy-
namic phenomenon, wouldn’t it be nice to be able to exploit them more? Instead
of simulating a situation, could we gear it or even veer it to a predefined perfor-
mance? This paper is concerned with the identification of parameters of dynamic
systems that ensure a specific performance or behavior. We propose to carry such
computations using intervals and constraint solving techniques. However, realisti-
cally, aiming to enable such identification and decision on an on-going process or
phenomena requires being able to conduct very fast computations on possibly very
large systems of equations. We further propose to combine interval and constraint
solving techniques with reduced-order modeling techniques to guarantee results in
a practical amount of time.

1 INTRODUCTION

Computer simulations of dynamic systems are really important to better understand
some processes or phenomena without having to physically execute them, and/or
to make offline decisions, or decisions that do not need immediate, “on-the-fly” an-
swers in general. These simulations use models derived from observations of natural
phenomena, which are often very complex and involving millions of variables. Run-
ning simulations on these high-fidelity models yields significant CPU time issues.
However, given a set of equations describing a dynamic phenomenon, wouldn’t it
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be nice to be able to exploit them more? Instead of simulating a situation, could we
gear it or even veer it to a predefined performance?

We propose to carry such computations using interval computations and con-
straint solving techniques. By using intervals, we account for the uncertainty from
observations that are never 100% accurate. However, realistically, aiming to enable
such identification and decision on an on-going process or phenomena requires be-
ing able to conduct very fast computations on possibly very large systems of equa-
tions. We further propose to combine interval and constraint solving techniques with
reduced-order modeling techniques to guarantee results in a practical amount of
time.

2 BACKGROUND

Modeling real-life phenomena can result in very large (most likely) nonlinear sys-
tems of equations. One way to solve these problems is to find the zeroes of large-
dimensional functions using some real-valued solvers, e.g. Newton’s method. The
convergence of the real-valued solvers depends on several factors: selection of the
initial point, continuity of the partial derivatives, condition on the Jacobian or the
Hessian matrix, among others. To overcome these issues, the solution can be sought
on a subspace where the convergence conditions are met, hence also reducing the
size of the problem to be solved: such general approach is called Reduced-Order
Modeling. We review it in what follows (Subsection 1).

Another challenge with solving dynamic systems is that we often assume that
the models are 100% accurate. This is seldom the case. Moreover, in the specific
case that we tackle in this article, where we aim to react to observations (possibly a
disruption) of an unwinding dynamic phenomenon by identifying new parameters to
adapt it “on the fly”, observations are not 100% accurate and such uncertainty needs
to be taken into account. As a result, if we are to solve such problems, we need to be
able to handle uncertainty, and to quantify it, to be able to assess the quality of our
solutions. Techniques that allow handling and quantifying uncertainty are reviewed
in Subsection 2.2.

2.1 Reduced-Order Modeling (ROM)

The models used in simulations of real-life phenomena often consist in very large
(most likely) nonlinear systems of equations: F(X) = 0, where F : Rn → Rn. Such
systems are called the Full-Order Model (or FOM) of a given problem. As very
large problems can yield significant solving time, a common approach consists in
decreasing/reducing the size of FOM, while remaining truthful to its original aim:
this process is called Model-Order Reduction (MOR) and results in a Reduced-
Order Model (ROM).
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The main idea of ROM is to find an approximation to a solution X̃ such that
||F(x̃)|| is sufficiently small in a k-dimensional subspace W of Rn, where k ≪ n.
Common techniques for Model-Order Reduction consist of two stages: 1) finding
the referred subspace and its corresponding basis Φ , here represented as an n× k
matrix [9, 10]1; and 2) finding Y ∗, the solution of the overdetermined (n×k) system
F(Φ ·Y ) = 0, i.e., Y ∗ = min

W
{Y : F(Φ ·Y ) = 0}, where W is the spanned subspace of

the columns of Φ . Once Y ∗ is found, the approximation X̃ of X such that ||F(X)||=
0 is determined by X̃ = Φ ·Y ∗, see Fig. 1 [11, 12].

Fig. 1 Representation of ROM. The red vector represents the solution X . The approximation X̄ , in
green color, lies on the spanned subspace W of Φ , here represented by a plane

2.2 Interval Computations

In this article, we aim to address situations in which an unfolding dynamic phe-
nomenon, for which we know F as well as all input parameters and other properties,
is perturbated and requires recomputation of some parameters so as to ensure that
some properties be satisfied (e.g., the below helicopter example where the landing
zone is guaranteed even after perturbation, see Fig. 2). In general, if we priori restrict
ourselves to a lower- dimensional space, we only get an approximation solution.

In the event of a perturbation, observations are essential to understanding
the perturbation but observations are inherently inaccurate. As a result, if we

1 In this paper, we assume that the basis Φ is given.
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Fig. 2 Parameters of the flight are reliably recomputed to reach the landing zone after perturbation

are to solve such problems, we need to handle and quantify uncertainty to as-
sess the quality of our solutions. We use interval computations to handle uncertainty.

In this paper, we propose to handle uncertainty as intervals. Whenever a quan-
tity is not known for sure, e.g., observed value v± ε , we will represent this uncer-
tainty as a closed interval: [v− ε,v+ ε], where given any real value r, r is the largest
floating-point number ≤ r, and r is the smallest floating-point number ≥ r. Such
floating-point-bounded intervals are carried in any computation originally involving
seemingly 100% accurate real values, following interval arithmetic rules, generally
described as follows:

∀ interval X , Y,∀ ▷◁∈ {+,−,∗,/}, X ▷◁ Y = Z ⊇□{x ▷◁ y | x ∈ X , y ∈ Y} (1)

where □A stands for the hull of set A, and Z is the smallest floating-point-bounded
interval including □{x ▷◁ y | x ∈ X , y ∈ Y}.

How to Solve Nonlinear Equations with Intervals? The premise of our approach
is to replace all real-valued computations with interval-based computations by ab-
stracting real-valued parameters into interval parameters, and using interval con-
straint solving techniques to find solutions [3]. In our case, each of our nonlinear
equations fi(x1, . . . ,xn) = 0 of the system to be solved is a constraint and our sys-
tem of nonlinear equations a system of constraints. Our goal is to find values of its
variables {x1, . . . ,xn} ∈ R that are such that: ∀i, fi(x1, . . . ,xn) = 0.

Constraint solving techniques allow us to identify all values of the parameters
that satisfy the constraints. Interval constraint solving techniques [4, 5] produce a
solution set (set of the solutions of the constraint system) that is interval in nature: it
is a set of multi-dimensional intervals (or boxes whose dimension is n, the number
of variables): this set is guaranteed to contain all the solutions of the constraint
problem (in our case, of the nonlinear system of equations).
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Most importantly, if the solving process returns no solution, we know for sure
that it is because there is no solution. This guarantee of completeness provided by
interval constraint solving techniques comes from the underlying solving mode: a
branch-and-bound [6] approach (or branch-and-prune for faster convergence [7])
that uses the whole search space as a starting point and successively assess the like-
liness of finding solutions in the given domain (via interval computations) and pos-
sibly (if Branch and Prune) reduce it, and discard domains that are guaranteed not
to contain any solution.

Using ICST, it is possible to determine if F(Φ ·P) = 0 has no solution, a unique
solution, or many solutions in the subspace W defined by Φ (see [2, 3]).

3 Problem Statement and Proposed Approach

Let us recall the problem we want to solve. Using the model of a dynamic system,
we aim to find certain parameter values that guarantee a specific outcome of the
modeled dynamic phenomenon.

Assuming this phenomenon is modeled as a parametric differential equation
(ODE / PDE), the parameters that lead to a certain outcome can be found as fol-
lows:

1. Discretize the ODE/PDE equation leading to a parametric system of equations
F(X ,P) = 0, where X = (x1,x2, . . . ,xn) is the approximation of the solution and
P are the parameters of the ODE/PDE equation, and F : Rn → Rn.

2. Let [i1, i2, . . . , im] a subset of [1,2, . . . ,n] where n is the dimension. Fix the values
of xi j = [xi j ,xi j ], with j = 1,2, . . . ,m representing the expected outcomes. Solve
for P using ICST the following system:

Φ(i1, :)Y = xi1 = [xi1 ,xi1 ]

Φ(i2, :)Y = xi2 = [xi2 ,xi2 ]

. . . . . .
Φ(im, :)Y = xim = [xim ,xim ]

F(ΦY,P) = 0

Where Φ(i j, :) is the i j-row of Φ . The solutions P correspond to the sought param-
eters.

4 Experimental Results and Analysis

In this section, we report on preliminary experiments of our approach on one well-
known problem: a particular case of the Lotka-Volterra problem. The Lotka-Volterra
problem models a predator-prey system. We use the following equations to describe
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this problem: {
v′ = θ1v(1−w), v(0) = v0 = 1.2
w′ = θ2w(v−1), w(0) = w0 = 1.1 (2)

where v and w respectively represent the number of preys and predators represented
in thousands. The system was integrated from time t0 = 0 to tm = 10 with a con-
stant step size h = 0.1. We used θ1 = 3 and θ2 = 1. Let us assume that at t = 5,
a perturbation occurs, which changes the number of predators and preys. Since, it
is not possible to know the new real number of animals of each species, the new
number of both species is handled with uncertainty, i.e v(t = 6) = [0.8062,0.8116],
w(t = 6) = [1.0834,1.0884]. Using ICST, it is possible to determine that, with θ1 =
[2.964,3.039] and θ2 = [0.9863,1.014], we reach a balance of the two species at
time t = 10, v(t = 10) = [0.7675,0.7738], w(t = 10) = [0.9903,1.0086], see Fig. 3.

In a similar setting, we were able to conclude that it is impossible to reach 1000
animal of each species by time t = 10, i.e, v(t = 10) = w(t = 10) = 1000.

Fig. 3 Recomputation of θ1 and θ2 after perturbation at time t = 6

5 CONCLUSIONS

In this article, we aimed to design a technique that allows to identify parameters of
a given (known and observed) dynamic system that has been perturbated, in such
a way that some final conditions still hold. We used Reduced-Order Modeling and
interval constraint solving techiques to determine such values of the phenomenon’s
parameters.

We were able to identify reliable intervals in which the desired parameters’ values
lie. We improved the runtime of this method by using ROM.

Future work includes taking into account the recomputation time and not assum-
ing that new behavior can be “plugged” directly from where perturbation happened.
As a result, more uncertainty needs to be taken into account, which includes time
uncertainty. Additionally, we plan to consider perturbations as fuzzy numbers. This
will require us to consider our dynamic system with uncertainty differently (e.g.,
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with fuzzy derivatives). But most importantly, this is expected to help us make more
informed decision: if we can label our input uncertainty with fuzzy values, how does
this inform us about labels on uncertain solutions to focus on the best ones? [13].
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