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Abstract—In many application areas, such as meteorology,
traffic control, etc., it is desirable to employ swarms of Unmanned
Arial Vehicles (UAVs) to provide us with a good picture of the
changing situation and thus, to help us make better predictions
(and make better decisions based on these predictions). To avoid
duplication, interference, and collisions, UAVs must coordinate
their trajectories. As a result, the optimal control of each of
these UAVs should depend on the positions and velocities of
all others – which makes the corresponding control problem
very complicated. Since, in contrast to controlling a single UAV,
the resulting problem is too complicated to expect an explicit
solution, a natural idea is to extra expert rules and use fuzzy
control methodology to translate these rules into a precise control
strategy. However, with many possible combinations of variables,
it is not possible to elicit that many rules.

In this paper, we show that, in general, it is possible to use
model reduction techniques to decrease the number of questions
and thus, to make rules elicitation possible. In addition to general
results, we also show that for the UAVs, optimal control indeed
leads to a model reduction – and thus, to a drastic potential
decrease in the corresponding number of questions.

I. SWARMS OF UNMANNED AERIAL VEHICLES (UAVS):
POTENTIAL ADVANTAGES AND CHALLENGES

Case study: meteorology. Let us start our explanation of need
for UAVs with meteorology.

One of the main objectives of meteorology is to predict
future weather.

Specifics of meteorology: dynamic equations are known.
The equations describing atmosphere are well known. Thus,
in principle, if we know the initial state of the atmosphere, we
can solve these equations and predict its future state.

Accurate long-term predictions are not possible, but short-
term predictions are possible. Of course, it is well known
that long-term predictions cannot be accurate: due to the
nature of the corresponding equations, a very small difference
in initial conditions eventually gets drastically amplified, as
result of which to get an accurate long-term prediction, we
need an impossible accurate knowledge of initial conditions.
This fact was first noticed by Edward N. Lorenz [20], who

famously remarked that a flap of a butterfly’s wing in Brazil
can eventually cause a tornado in Texas; his results started
what is now known as chaos theory.

However, for short-term predictions, the equations work
really well.

Meteorological predictions: successes. The ability to use
high performance computers to perform the corresponding
predictions has made current weather predictions much more
accurate than in the past.

Meteorological predictions: limitations. However, the pre-
diction accuracy is still far from perfect. The main reason for
this imperfection is that there are many areas of the Earth from
which we do not have enough data about the current state of
the atmosphere. Mostly, these are areas with few people living,
such as desert areas, Arctic and Antarctic areas, etc.

How to overcome these limitations. To improve the pre-
diction accuracy, it is important to measure the values of
meteorological quantities in desert areas, Arctic areas, etc.

Traditional approach (stationary sensors) vs. UAVs. The
traditional approach to increasing data coverage in an area is
to place additional sensors in this area. However, placing a
sensor in a remote uninhabited area is costly. On top of the
cost of placing the sensors, we also need to organize periodic
maintenance of the sensors, which leads to additional expenses
– and the corresponding budgets are limited.

Stationarily placed sensors provide us only with the infor-
mation about a small vicinity of their location. It is therefore
desirable, instead, to use measuring instruments that would
provide a much wider area coverage. Since stationary devices
cannot provide a wide coverage, we need mobile devices. In
sparsely populated areas, with few (or even none) roads, this
means that we need to use aerial devices. Thus, it is desirable
to use Unmanned Aerial Vehicles (UAVs).

Use of UAVs in meteorology: current experience and future
plans. Preliminary experience shows that the UAVs can indeed
bring a lot of useful meteorological information; see, e.g., [4],
[5].
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At present, at least in the US, the UAVs are not actively
used to collect meteorological data, because until Fall 2015,
there are very strict regulations in place enforced by the
Federal Aviation Administration. These regulations make the
use of UAVs for simple tasks (like collecting meteorological
data) too complicated and too expensive.

However, in view of the numerous potential advantages of
UAVs, the US Congress has required the FAA to adopt, by
Fall 2015, more relaxed regulations that would encourage the
use of UAVs. In preparation for this, many researchers are
developing techniques and methods for using UAVs.

Other potential applications of UAVs. There are many other
potential applications of UAVs as mobile sensors. For example,
they can be used, instead of expensive stationary sensors, to
monitor traffic and thus, to be able to estimate the driver’s
paths that would minimize city traffic congestions. They can
be used to monitor potential areas of border drug smuggling;
see, e.g., [10], etc.

Need for deploying swarms of UAVs. In most cases, to get a
better coverage, we need to deploy several UAVs. For example,
we need several UAVs to collect meteorological information
in a large area, we need several UAVs to monitor traffic in
a big city, we need several UAVs to successfully monitor for
potential drug smuggling attempts along a long stretch of the
border, etc.

Jointly, these UAVs should cover a large area. Thus, the
subareas covered by individual UAVs should intersect. It is
therefore desirable for these UAVs to coordinate their activi-
ties, to avoid duplications, and – what would be even worse –
interference and collisions between the UAVs operating close
to each other. Such a group of mutually coordinated UAVs is
usually called a swarm.

Swarms of UAVs: need to use intelligent (fuzzy) control.
One of the main challenges in operating a swarm of UAVs is
to provide the corresponding control.

For individual UAVs, it is possible to come up with optimal
control strategies; see, e.g., [4], [5], [10]. However, already
these individual control problems are not easy to formulate
and to solve.

For a swarm of UAVs, we need to determine the coordi-
nates and velocities of all the UAVs. The sheer number of
unknowns makes the corresponding optimization problem too
complicated to hope for an explicit solution. A reasonable
alternative is thus to utilize expert rules – namely, to use fuzzy
control methodology (the methodology specifically designed to
translate such rules into an exact control strategy) to translate
these rules into an exact strategy for controlling a swarm of
UAVs.

Use of fuzzy control for a swarm of UAVs: challenges. To
implement the above idea, we need to elicit the corresponding
rules from the experts. These rules have to describe what
control to apply in each situation, depending on the current
locations and velocities of all the UAVs in the swarm.

And here lies a problem. Such a rule elicitation can be
feasibly done in situations when the desired control depends

on the value of two (or, more generally, a few) quantities. We
just select five or so possible fuzzy values of each of these
quantities (small, medium, etc.), and then ask the expert what
control to apply for each pair of such values. For example, for
a robot trying to avoid an obstacle we can ask what control
to apply if the robot’s distance to the obstacle is small and its
velocity is medium, what to do when the distance is large and
the velocity is small, etc. This is how fuzzy rules are usually
elicited, and an expert can usually generate the corresponding
5× 5 = 25 (or fewer) rules.

For a swarm, however, in principle, the control applied to
each UAV may depend on the locations and velocities of all
the other UAVs. Even if use three levels of each of N variable,
then for large N , the number of resulting combinations (3N ) is
huge; it is not realistically possible to ask that many questions
to the experts.

What we do in this paper. In this paper, we show that,
in general, it is possible to use model reduction techniques
to decrease the number of questions and thus, to make rules
elicitation possible. In addition to general results, we also show
that for the UAVs, optimal control indeed leads to a model
reduction – and thus, to a drastic decrease in the corresponding
number of questions.

II. MODEL REDUCTION: GENERAL IDEA AND ITS
PHYSICAL AND MATHEMATICAL FOUNDATIONS

The main idea behind Newton’s physics: reminder. In order
to describe the main ideas behind model reduction, let us
recall that the foundations of most of modern physics is still
Newton’s physics.

In Newton’s physics, the state s of an object is described
by its location x⃗ and its velocity v⃗: s = (x⃗, v⃗). To describe
how the state changes with time, we need to describe how
the coordinates and the velocities change. The change in

coordinates is determined by the velocities:
dx⃗

dt
= v⃗, while

the change in the velocity – i.e., acceleration a⃗ =
dv⃗

dt
– is

determined by the Second Newton’s law m · a⃗ = F⃗ , where m
is the object’s mass, and F⃗ is the sum F⃗ =

∑
i

F⃗i of all the

forces that act on this body.

By dividing both sides of Newton’s equation by the mass
m, we can conclude that a⃗ =

∑
i

f⃗i, where we denoted

f⃗i
def
=

1

m
· F⃗i. In other words, for the state s, we have

ds

dt
=

(
v⃗,
∑
i

f⃗i

)
, i.e.,

ds

dt
=
∑
i

gi, where gi denote the

terms corresponding to different forces.

To describe the dynamics, we therefore need to know
what type of forces are possible. Some of these forces are
determined by the state s of the object itself. For example,
when the object is moving through atmosphere or through
water, it is slowed down by the friction force which, in general,
depends on the object’s velocity F⃗0 = F (v⃗). the corresponding
term f⃗0 thus also depends only on the state of the given object.

In this case, we have
ds

dt
= g(s).



Other forces describe the action of other objects on this
object. A typical example of such a force – the main one
described by Newton himself – is the force of gravity, which
describes the general effect of all other bodies as

F⃗ =
∑
i

G · m ·mi

|x⃗− x⃗i|3
· (x⃗i − x⃗),

which corresponds to

f⃗ =
1

m
· F⃗ =

∑
i

G · mi

|x⃗− x⃗i|3
· (x⃗i − x⃗).

The resulting force is the sum of the terms depending on the
state s of the current object and the states si of other objects:
ds

dt
=
∑
i

g(s, si).

In principle, we can also have forces corresponding to the
combined effect of several other objects, in which case we
have

F⃗ =
∑
i,j

F⃗ (s, si, sj) +
∑
i,j,k

F⃗ (s, si, sj , sk) + . . . ,

so that
ds

dt
=
∑
i,j

g(s, si, sj) +
∑
i,j,k

g(s, si, sj , sk) + . . .

By grouping together terms corresponding to different number
of affecting objects, we get the general description of the state’s
dynamics as described by Newton’s laws:

ds

dt
= g(s) +

∑
i

g(s, si) +
∑
i,j

g(s, si, sj)+

∑
i,j,k

g(s, si, sj , sk) + . . .

The corresponding mathematical model and the main idea
behind model reduction. In general, the right-hand side of
the above formula describes a function of many variables s,
s1, s2, . . . The above representation presents this function as
a sum of different terms of increased complexity: first come
terms which depend only on a single state s, then terms that
depend on two states s and si, then terms that depend in three
states s, si, and sj , etc.

This formula inspired mathematicians to propose represent-
ing a general function of many variables in a similar form (see,
e.g., [19], [25]):

f(x1, . . . , xn) = f0 +
∑
i

fi(xi) +
∑
i,j

fi,j(xi, xj)+

∑
i,j,k

fi,j,k(xi, xj , xk) + . . .

This representation is known as model reduction (or, alter-
natively, high dimensional model representation (HDMR)),
because in many practical situations, a few first terms in this
representation are sufficient to reasonably accurately represent
a function.

In most cases, it is sufficient to use the first three terms

f(x1, . . . , xn) ≈ f0 +
∑
i

fi(xi) +
∑
i,j

fi,j(xi, xj).

Beyond Newton’s physics: how relativity theory makes
many physical formulas and related computations simpler.
It is well known that, in spite of the fact that most phenomena
of macroscopical physics are well described by Newton’s
physics, in general, Newton’s physics is only approximately
true. Historically the first deviation from Newton’s physics
came with Relativity Theory; see, e.g., [7].

At first glance, the equations of special relativity are
somewhat more complicated than the equations of Newton’s
mechanics. As a result, e.g., the need to take into account rela-
tivistic effects in celestial mechanics makes the corresponding
computations much more complex; see, e.g., [11], [14].

However, there is a fundamental feature of relativity the-
ory that makes computations simpler. Namely, in Newton’s
physics, all interactions were interactions-at-distance. As a
result, to predict the future state of an object, theoretically,
we need to know the current state of all other objects in the
Universe – since in principle, each of these other objects, no
matter how distant they are, can affect the state of the given
object.

In contrast, in relativity theory, the speed of all interactions
and all interactions is limited by the speed of light c. Thus,
in order to predict, based on the information available at time
t, the state of an object at location x⃗ at moment t + ∆, it is
sufficient to take into account only the objects whose distance
from x⃗ does not exceed c·∆t. This limitation makes predictions
easier to compute.

How seeming action-at-a-distance is explained in relativis-
tic physics. If there is no action-at-a-distance, then how can
we explain interaction between distant bodies?

The explanation is straightforward, and it comes from
observing phenomena when the details of such seeming action-
at-a-distance can be analyzed in detail. When one person talks
to another one, what happens in that molecules of air start
interacting, and the corresponding acoustic wave travels from
the first person’s mouth to the second person’s ears. When
distant insects find each other during the mating season, what
happens is that molecules of pheromones travel from one insect
to another. When one person calls another person’s cell phone,
the electromagnetic waves – i.e., photons – travel from one cell
phone to the other.

In general, in relativity theory, a seeming action-at-a-
distance is always explained as an exchange of some auxiliary
objects.

Historical comment. It is worth mentioning that A. Einstein
was awarded his Nobel prize not for the Relativity theory –
which at that time was mostly of theoretical interest – but for
his analysis of the physics of photons, practically important
analysis that was clearly motivated by the theoretical ideas
behind his relativity theory.



How local character of interactions can help us. In Newton’s
physics, when action-at-a-distance is possible, we can, in prin-
ciple, envision a joint effect of three, four, and more objects.
As a result, in the general formula for model reduction, we
could have terms of the type f(xi, xj , xk), f(xi, xj , xk, xℓ),
etc.

In contrast, in relativistic physics, while an interaction
between two objects is quite possible – when these objects
happen to be sufficiently close – interaction between three
objects is highly improbable, since it is highly improbably that
three objects accidentally happen to be in the same location at
the same moment of time.

This impossibility can be illustrated on the example of
chemical kinetics: while it sometimes feels like some chemical
reactions transform three different molecules into something
new, it always turns out that only two molecules can inter-
act at each moment of time (since the probability of three
molecules accidentally meeting is miniscule). What actually
happens is that two molecules interact, and then the result
of this interaction interacts with the third molecule. This is,
for example, what usually happens during catalysis, when an
additional molecule (called a catalyst) speeds up the reaction
between the two original molecules; see, e.g., [1], [2], [3],
[15], [16].

Since only pair-wise interactions are thus physically possi-
ble, we can use only pair-wise interaction terms in the general
description of physically meaningful functions

f(x1, . . . , xn) = f0 +
∑
i

fi(xi) +
∑
i,j

fi,j(xi, xj),

and in the corresponding description of a system’s dynamics:

ds

dt
= g(s) +

∑
i

g(s, si) +
∑
i,j

g(s, si, sj).

Historical comment. It is worth mentioning that, while in
principle, Newton’s theory allows triple, quadruple, etc. in-
teractions, the main success of the original Newton’s theory –
celestial mechanics – used only pairwise interactions.

Mathematical comment. This physical result is in good ac-
cordance with the famous Kolmogorov’s theorem that any
continuous function can be represented as a composition of
functions of one and two variables [13] (see also [26]).

This theorem was proven as part of the work on the
famous Hilbert’s problems [6], [9] that David Hilbert, the most
famous mathematician in the year 1900, selected as the most
important problems for the 20 century mathematics. One of
these problems was to prove that not every function of many
variables can be represented as a composition of functions of
one or two variables – a conjecture that Kolmogorov disproved.

Kolmogorov’s result has been used in many application
areas, including fuzzy and neural techniques [8], [17], [18],
[21], [22], [23]: for example, it explains why in fuzzy logic,
we concentrate on unary and binary operations such as nega-
tion operations, “and” and “or”-operations (t-norms and t-
conorms), etc.: all other operations can be represented as
compositions of unary and binary ones.

Conclusion about UAVs. We should look for controls that
only take into account pair-wise interaction between the UAVs.

Let us show that for swarms of UAVs, this restriction can
be explained by the need for optimal control.

III. NEED FOR OPTIMAL CONTROL EXPLAINS
RESTRICTION TO PAIRWISE COORDINATION BETWEEN

UAVS

Main objectives of a swarm of UAVs: reminder. Our goal
is to select the trajectories of all the UAVs in such a way that
between them, the UAVs cover the desired area.

What should we optimize. While the UAV is in the air,
it automatically measure the values of the corresponding
quantities. Due to energy limitations, a UAV cannot be in the
air all the time – unless we are talking about a solar-panelled
UAV flying over sunny desert; so, we need to refuel it. The
longer the UAV is in the air, the less refuelling maintenance
the system needs.

Thus, when planning UAV trajectories, it is reasonable to
maximize the time that the UAV is in the air – i.e., in other
word, to minimize the UAV’s fuel consumption.

How to minimize UAV’s fuel consumption: inertia can help.
How can we minimize the UAVs’ fuel consumption? For that,
we can use basic physics, namely, again Newton’s physics.

In the previous section, we used the Second Newton’s Law,
now we will use the First Newton’s Law – that when no
forces act on a body, it retains its speed and the direction
of its motion. Of course, the UAV still needs some energy to
maintain its flight, to overcome gravity forces that drag it down
and friction forces that slow it down. However, in general, in
accordance with the First Newton’s Law, the fewer deviations
of the trajectory from a straight line, the smaller amount of
energy needed to support this trajectory.

So, optimal trajectories should consist of several straight-
line segments, with as few turns as possible. For the fixed
amount of fuel, a UAV can fly, in general, a trajectory of a
fixed overall length. We want to minimize the number of turns
during this length; this is equivalent to maximizing the length
of each straight-line segment.

So, if we need to design a swarm of UAVs to cover an area
of size W×L, with W ≤ L, it makes sense to have all straight-
line trajectory segments to be of the maximum possible length
within this region – i.e., of length L. Thus, each UAV should
go from one side of the region to another and then back again,
covering the area of size w · L, where w is how much width
this UAV can cover before it runs out of fuel; see Fig. 1.

Such long vertical regions are neighboring to each other,
so each UAV needs to coordinate its motion only with two
immediate neighbors: one to the left and one to the right.

This conclusion justifies, for the case of UAVs, our general
conclusion that only pair-wise interactions need to be take into
account – and this open the possibility of eliciting fuzzy rules
for controlling swarms of UAVs.
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