
If We Take Into Account that Constraints Are Soft,
Then Processing Constraints Becomes

Algorithmically Solvable
Quentin Brefort and Luc Jaulin

ENSTA-Bretagne, LabSTICC, IHSEV, OSM
2 rue François Verny, 29806 Brest, France

Quentin.Brefort@ensta-bretagne.org, luc.jaulin@ensta-bretagne.fr

Martine Ceberio and Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
500 W. University

El Paso, Texas 79968, USA
mceberio@utep.edu, vladik@utep.edu

Abstract—Constraints are ubiquitous in science and engi-
neering. Constraints describe the available information about
the state of the system, constraints describe possible relation
between current and future states of the system, constraints
describe which future states we would like to obtain. To solve
problems from engineering and science, it is therefore necessary
to process constraints. We show that if we treat constraints as
hard (crisp), with all the threshold values exactly known, then in
the general case, all the corresponding computational problems
become algorithmically unsolvable. However, these problems
become algorithmically solvable if we take into account that in
reality, constraints are soft: we do not know the exact values of the
corresponding thresholds, we do not know the exact dependence
between the present and future states, etc.

I. FORMULATION OF THE PROBLEM: CONSTRAINT
PROCESSING IS UBIQUITOUS IN SCIENCE AND

ENGINEERING

Main objectives of science and engineering: reminder. The
main objective of science is to describe the world. The main
objective of engineering is to predict consequences of different
actions, different designs – and to select actions and designs
which will lead to the future state with desired properties.

Main objectives of science and engineering: towards a
precise description. Our information about the physical world
usually comes in terms of the numerical values of different
physical quantities. To describe the weather, we describe the
temperature, the atmospheric pressure, the components of
wind velocity, etc. To describe the health of a patient, we
list numerous numbers coming from the blood test, from – if
needed – EKG, etc.

The actual state of the world is therefore described in
terms of the values of the corresponding physical quantities
x1, . . . , xn. In these terms, to describe the world means to
find out as much as possible about the possible values of the
corresponding tuple x = (x1, . . . , xn).

To understand the consequences of a certain action means to
find out as much as possible about the future values y1, . . . , ym
of the relevant quantities – and we should be able to find the
action for which the future state satisfies the desired properties.

Let us show that constraints are ubiquitous. Let us show
that a natural description of all these objective necessitates the
use of constraints.

Constraints are important in determining the state of the
world. Let us start with the very first objective: determining
the state of the world. Our information about the world comes
from measurements. An ideal measurement of a physical
quantity returns the exact value of this quantity. However, in
practice, measurements are never ideal:

• Measurement never result in a single value of a quantity.
• Instead, measurements result in describing a set of pos-

sible values of the corresponding quantity.
For example, if:

• after measuring a quantity xi, we get the value x̃i, and
• the manufacturer of the measuring instrument provided

us with an upper bound ∆i on the corresponding mea-
surement error ∆xi

def
= x̃i − xi (|∆xi| ≤ ∆i),

then the only information that we gain about the actual
(unknown) value xi of this quantity is that this value belongs
to the interval [x̃i −∆i, x̃i +∆i]; see, e.g., [14].

Some measuring instruments measure one of the basic
quantities xi; other measuring instruments measure some
combinations y = f(x1, . . . , xn) of these quantities. In this
case, after we perform the measurement and find out that the
value y is between the corresponding bounds y

def
= ỹ−∆ and

y
def
= ỹ +∆, we can then conclude that the actual (unknown)

tuple belongs to a set

{(x1, . . . , xn) : y ≤ f(x1, . . . , xn) ≤ y}. (1)

From the computational viewpoint, a set is a constraint; see,
e.g., [2], [3], [5], [11], [15]. Thus, constraints are important
in determining the state of the world.

Constraints are important in predicting the future states.
To make predictions about the future state y = (y1, . . . , ym)
based on the current state x, we need to know the relation
between x and y.

In simple situations, the corresponding relation is straight-
forward: the available information about the state x enables us
to uniquely determine the state y. For example, this is the case
of simple mechanical systems: once we knowing the initial
location and velocity of a plant, we can uniquely predict its
position at future moments of time.

In other cases, however, the future state y depends not only
on the current information about the state, but also on many
unknown factors. For example, even if we know the exact
weather conditions in an area, this is not enough to make a
long-term weather prediction for this area: future weather is
also affected by difficult-to-measure factors such as the in-
depth oceanic behavior.

In general, we do not have a deterministic dependence of y
on x; instead, we have a relation, i.e., the set R ⊆ X × Y of
possible pairs (x, y).

In computational terms, a relation is a constraint. Thus, con-
straints are important for predicting consequences of different
actions.

Constraints are important for selecting an action. Let a =
(a1, . . . , ap) be parameters describing possible actions, and let
A ⊆ IRp be a set of possible actions.

In the ideal case:
• we know the current state x,
• we know how different actions will affect this state, i.e.,

we know the relation y = f(x, a), and
• we have a constraint that the future state y must satisfy.

For example, when we design a car engine, we must make sure
that its energy efficiency y1 exceeds the required threshold,
that the concentration y2 of potential pollutants in its exhaust
does not exceed a certain level, etc. If we describe the
corresponding set of desired tuples y by D, then the problem
is to find the set R = {a ∈ A : f(x, a) ∈ D} of actions which
result in the satisfaction of all the required constraints.

In a more realistic case, instead of the exact state x, we
only know a set S of possible states x. In this case, we need
to find actions which would lead to the satisfaction of the
desired constraints for all possible states x. In other words,
we need to describe the state

{a ∈ A : f(x, a) ∈ D for all x ∈ S}. (2)

Need for processing constraints. The above analysis shows
that in solving problems from science and engineering, we
need to process constraints. Let us list the resulting computa-
tional problems:

• First, we need to describe the results of each measure-
ment. Specifically, once we have a computable function
f(x1, . . . , xn) and computable values y and y, we need
to describe the set {x : y ≤ f(x) ≤ y} of possible tuples
x – i.e., of all the tuples x which are consistent with the
results of this measurement.

• Second, we need to be able to combine the results of
several measurements. In other words:

– we know the set S1 of all the tuples which are
consistent with the first measurement;

– we know the set S2 of all the tuples which are
consistent with the second measurement;

– . . .
– we know the set Sm of all the tuples which are

consistent with the m-th measurement;
– we need to describe the set S = S1∩ . . .∩Sm of all

the tuples which are consistent with the results of all
available measurements.

• Then, we need to be able to predict the future state:
– we know the set S ⊆ X of possible states of the

world;
– we know the relation R ⊆ X × Y that describes the

system’s dynamics;
– we need to describe the set of possible Y of possible

future states:

Y = {y : (x, y) ∈ R for some x ∈ S}. (3)

In mathematical terms, Y is known as a composition
Y = R ◦ S.

• Finally, we need to describe the set of possible actions:
– we know the set S ⊆ X of possible states;
– we know the set A of possible actions;
– we know the set D ⊆ Y of desired future states;
– we know a computable function f(x, a) that de-

scribes how the future state depends on the initial
state x and on the action a;

– we need to describe the state of actions that lead to
the desired goal

{a ∈ A : f(x, a) ∈ D for all x ∈ S}.

What we do in this paper. In this paper, we start by describing
the above four fundamental problems of constraint processing
in precise algorithmic terms. We then show that in general, all
these problems are algorithmically unsolvable.

At first glance, this sounds like one of these negative results
that have been appearing starting with the 1930s Goedel’s
Theorem. However, we will show that for our constraint
processing problems, the situation is not as negative as it may
seem. To be more precise:

• The situation is indeed negative if we assume that all
the constraint are known exactly: that we know the exact
bounds on the measurement error, that we know the exact
relation between the present and future states, etc.

• However, in reality, these constraints are only know
approximately. In other words, the constraints are actually
soft [2], [3], [5], [11], [15]: the corresponding numerical
bounds are only approximately known, the resulting sets
may somewhat deviate from their exact form, etc. We will
then show that if we take this softness into account, then
all four fundamental problems become algorithmically
solvable.

II. WHAT IS COMPUTABLE, WHEN CONSTRAINTS ARE
COMPUTABLE, ETC.: A REMINDER

Mathematical objects for which we need to describe what
is computable and what is not. In the above analysis, we
started with the simplest object – a real number – which
describe the value of a single quantity. Next, we considered
tuples of real numbers – which describe states. After that, we
considered functions and sets (constraints). To analyze which
problems related to these objects are algorithmically solvable
and which are not, we must first describe these objects in
precise algorithmic terms.

Comment. A detailed description of computable objects and
their properties can be found in [1], [10], [13], [16].

What is a computable real number? Let us start our
description of what is computable and what is not with the
simplest object – a real number. In physical terms, a real
number describes the actual value of a physical quantity. As
we have mentioned earlier, it is not possible to learn the
exact value of this quantity, measurements can only provide us
with approximate values. From this viewpoint, it is reasonable
to call a real number computable if we can algorithmically
predict, for each measurement, what will be the corresponding
measurement result.

Let us describe this idea in precise terms. Most modern
measuring instruments produce the measurement result in the
binary form: as a sequence of bits describing the value of
the measured quantity. Each measuring instrument provides
only an approximate value of the quantity; in other words, it
provides only the few (k) first bits in the binary expansion
of the actual (unknown) value x. In mathematical terms, the
measurement result is thus a rational number rk for which
|x− rk| ≤ 2−k. Thus, we arrive at the following definition.

Definition 1. A real number x is called computable if there
exists an algorithm that, given a natural number k, returns a
rational number rk for which |x− rk| ≤ 2−k.

What is a computable tuple? This definition is straightfor-
ward: a tuple x = (x1, . . . , xn) is computable if and only if
all n real numbers x1, . . . , xn are computable.

All physical quantities are bounded: an observation. From
the purely mathematical viewpoint, a real number can take
any value from −∞ to +∞. In practice, however, for each
physical quantity, we usually know the bounds. For example:

• in physical measurements, a velocity cannot exceed the
speed of light;

• in meteorological measurements, temperature must be
between −80◦ and +50◦ C, and there are also bounds
on wind speed, velocity., etc.

In the following text, we will denote the known lower and
upper bounds on the i-th quantity by, correspondingly, Li and
Ui; then, all physically possible values xi must be from the
interval [Li, Ui].

What is a computable function? A functional dependence
y = f(x) between two physical quantities x and y is

computable if, given the values of the quantity x, we can
algorithmically predict the value of the quantity y.

In practice, as we have mentioned, we do not know the
exact value of x, we only know estimates rk for this value.
We therefore need to be able, based on the estimate rk for
x, to compute the corresponding estimate sℓ for y. We also
need to know how accurately we need to measure x to be
able to estimate y with a given accuracy. Thus, we arrive at
the following definition.

Definition 2. A function f : X → Y is called computable if
there exist two algorithms:

• the first algorithm, given a rational number r ∈ X and a
natural number ℓ, computes a 2−ℓ-approximation to f(r);

• the second algorithm, given a natural number ℓ, gener-
ates a natural number k such that d(x, x′) ≤ 2−k implies

d(f(x), d(x′)) ≤ 2−ℓ.

Observable sets. We want to describe sets S – or, in other
words, constraints – which are observable in the sense that,
based on the observations (measurements), we can, in princi-
ple, determine whether a give state satisfies this constraint or
not. Let us show that from the mathematical viewpoint, such
sets have an interesting property – they are closed in the usual
mathematical sense that:

• if a sequence of states sk ∈ S tends to a limit state s,
• then this limit state s should also belong to the set S.
From the mathematical viewpoint, the fact that the state s

is equal to the limit of the states sk means that for every
ε > 0 there exists an integer K such that for all k ≥ K,
we have d(sk, s) ≤ ε. In physical terms, this means that no
matter how accurate our measurements, we will never be able
to distinguish the state s from the appropriate state sk. In
other words, no matter how many measurements we perform,
we cannot distinguish the state s from one of the physically
possible states sk. Since the state s is consistent with all
possible measurements, this means that we should classify the
state s as physically possible. Thus, the set S of physically
possible states is indeed closed.

What is a computable set? Finally, let us describe what it
means for a closed set S to be computable. We are interested in
sets of states. From the mathematical viewpoint, we can have
infinitely many possible states, characterized by all possible
real-valued tuples x = (x1, . . . , xn). However, in practice,
we only find an estimate of the actual state – by using
measurements with a given accuracy.

Once we know the accuracy, then, in effect, we only have
finitely many distinguishable states. For example, if the value
of a quantity is known to be between 0 and 10, and we measure
it with accuracy 0.1, then we cannot distinguish between the
values like 1.02 and 1.07 the difference between them is below
the instrument accuracy.

In this approximation, when we only have finitely many
distinguishable states, a general set of states is represented
simply a finite subset of this set of sets distinguishable within

this accuracy. For each accuracy 2−k, this (approximate) finite
set Sk approximates the actual (infinite) set S in the following
natural sense:

• each element s ∈ Sk is 2−k-close to some state s′ ∈ S;
• vice versa, each element s′ ∈ S is 2−k-close to some

state s ∈ Sk.
This relation between the two sets can be described in terms
of the Hausdorff distance

dH(A,B)
def
= max

(
max
a∈A

d(a,B),max
b∈B

d(b, A)

)
,

where d(a,B)
def
= min

b∈B
d(a, b), as dH(Sk, S) ≤ 2−k. Thus, we

arrive at the following definition.

Definition 3. A closed set S ⊆ [L1, U1] × . . . × [Ln, Un] is
called computable if there exists an algorithm that, given a
natural number k, produces a finite list Sk of computable
points which is 2−k-close to S, i.e., for which

dH(Sk, S) ≤ 2−k.

Comment. We consider closed bounded sets. It is known that
closed bounded subsets of a finite-dimensional space IRn are
compact. Because of this, computable sets are also known as
computable compact sets; see, e.g., [1].

Known results about computable numbers, functions, and
sets [1], [10], [13], [16]:

• For every two computable numbers ℓ < u, we can, given
a computable number x, check whether x > ℓ or x < u:
to check this, it is sufficient to compute x, ℓ, and u with
a sufficient accuracy.

• No algorithm is possible that, given a computable real
number a, would check whether a = 0 or a ̸= 0.

• No algorithm is possible that, given a computable real
number a, would check whether a ≥ 0 or a < 0.

• No algorithm is possible that, given a computable real
number a, would check whether a ≤ 0 or a > 0.

• There is an algorithm that, given two computable tuples
x and y, computes the distances

d∞(x, y)
def
= max(|x1 − y1|, . . . , |xn − yn|) and

d2(x, y)
def
=
√
(x1 − y1)2 + . . .+ (xn − yn)2.

• Minimum and maximum are computable.
• Composition of computable functions is computable. In

particular, maximum and minimum of finitely many com-
putable functions is computable.

• It is algorithmically possible, given a computable set S
and a computable function F (x), to compute max

x∈S
F (x)

and min
x∈S

F (x).

• For every computable function F (x, y) and for every
computable set S ⊆ X , the functions max

x∈S
f(x, y) and

min
x∈S

f(x, y) are computable functions of y.

• There exists an algorithm that, given a computable tuple
x and a computable set S, returns the distance d(x, S).

• For every two computable sets A and B, their union A∪B
is also computable: namely, one can easily check that if
Ak approximate A and Bk approximate B, then Ak∪Bk

approximates A ∪B.
• For every two computable sets A and B, the corre-

sponding set of pairs A×B is also computable: namely,
one can easily check that if Ak approximate A and Bk

approximate B, then Ak × Bk approximates A × B (in
the sense of d∞-metric).

• There exists an algorithm that, given a computable set S,
a computable function f , and computable real numbers
a < b, returns a computable number η ∈ (a, b) for which
the set {x ∈ S : f(x) ≤ η} is computable.

III. UNDER HARD (CRISP) CONSTRAINTS, ALL FOUR
FUNDAMENTAL PROBLEMS OF CONSTRAINT PROCESSING

ARE NOT ALGORITHMICALLY SOLVABLE

Before we start describing our positive algorithmic results,
let us first list the promised “negative results” – that if we
treat constraints exactly, then for each of the four fundamental
problems of constraint processing, no algorithm is possible
which would solve all particular cases of the corresponding
problem.

Proposition 1. No algorithm is possible that, given a com-
putable function f(x1, . . . , xn) and computable numbers y
and y, returns the set {x : y ≤ f(x) ≤ y}.

Proof. The proof is by contradiction. One can easily check that
the function f(x1) = max(min(x1, 0), x1−1) is computable.
This function is equal:

• to x1 for x ≤ 0,
• to 0 for 0 ≤ x ≤ 1, and
• to x− 1 for x ≥ 1.

For y = −1 and y = a, the set {x : y ≤ f(x) ≤ y} is equal:
• to [−1, 1 + a] when a ≥ 0 and
• to [−1, a] when a < 0.

Thus, the maximum M of the function F (x1) = x1 on this
set is equal:

• to 1 + a for a ≥ 0 and
• to a for a < 0.

In particular, for |a| < 0.1, we get:
• M ≥ 0.9 when a ≥ 0 and
• M < 0.1 when a = 0.

So, if we could algorithmically produce the set

{x : y ≤ f(x) ≤ y},

we would be able to estimate the value M and thus, to check
whether a computable number is negative or non-negative –
which is known to be impossible. The proposition is proven.

Proposition 2. No algorithm is possible that, given two
computable sets S1 and S2, computes their intersection.

Proof. Let us take S1 = {0, 1}. For every computable number
a, let us take S2 = {a, 1}. The intersection S1 ∩ S2 is equal:

• to {0, 1} when a = 0 and
• to {1} when a ̸= 0.

Thus, the minimum m of the function F (x1) = x1 over the
intersection is equal:

• to 0 when a = 0 and
• to 1 when a ̸= 0.

If the intersection was computable, then m would be com-
putable too; by computing m with accuracy 0.1, we would be
able to check whether m = 0 or m = 1 – and thus, check
whether a = 0 or a ̸= 0, and we know that this is not possible.

Proposition 3. No algorithm is possible that, given com-
putable sets S ⊆ X and R ⊆ X×Y , returns the composition
Y = R ◦ S.

Proof. Let us take

R = {(x, y) : (−1 ≤ x ≤ 0& y = 0)∨

(0 ≤ x ≤ 1& − 1 ≤ y ≤ 1)}.

This set is clearly computable. For every computable number
a, we can form a computable set S = {a}. Here:

• R ◦ S = {0} when a < 0 and
• R ◦ S = [−1, 1] when a ≥ 0.

Thus, the maximum M of the function F (y) = y over the set
R ◦ S is equal:

• to 0 when a < 0 and
• to 1 when a ≥ 0.

If we could compute the composition, we would be able to
compute M and thus, decide whether a < 0 or a ≥ 0 – and
we know that this is impossible. The proposition is proven.

Proposition 4. No algorithm is possible that, given com-
putable sets S, A, and D, returns the set {a ∈ A : f(x, a) ∈
D for all x ∈ S} of actions that lead to the desired goal.

Proof. Let us take A = {0, 1}, let f(x, a) = a − x, and let
D = [0, 1]. In this case, we want to return the set R of all the
actions a ∈ {0, 1} for which a ≥ x for all x ∈ S. For each
computable number v ∈ (−1, 1), we can take S = {v}.

• When v ≤ 0, then R = {0, 1}.
• When v > 0, then R = {1}.

Thus, the minimum m of the function F (a) = a over the set
R is equal:

• to 0 if v ≤ 0 and
• to 1 if v > 0.

So, if we could compute the set R, we would be able to tell
whether v ≤ 0 or v > 0 – and this is known to be impossible.
The proposition is proven.

IV. MAIN RESULT: UNDER SOFT CONSTRAINTS, ALL
FOUR FUNDAMENTAL PROBLEMS OF CONSTRAINT
PROCESSING ARE ALGORITHMICALLY SOLVABLE

Constraints are actually soft. The above negative results
assume that all constraints are hard (crisp), i.e., all the
thresholds are exactly known. In reality, the thresholds like
y and y are only approximately known: e.g., a bound on the
measurement error can be 0.1, or it can be 0.101, from the
physical viewpoint it is the same situation. So, if we find
a solution for values which are slightly different from the
original values y and y, then this still solves the original
physical problems.

Let us prove that due to this softness of constraints, all four
constraint processing problems are algorithmically solvable.

Proposition 5. There is an algorithm that, given a computable
function f(x1, . . . , xn) and computable numbers y < y, and
ε > 0, returns:

• a computable value Y which is ε-close to y: |Y −y| ≤ ε;
• a computable value Y which is ε-close to y: |Y −y| ≤ ε;

and
• a computable set {x : Y ≤ f(x) ≤ Y }.

Proof. One can easily check that the double inequality

y ≤ f(x) ≤ y

is equivalent:
• to f(x)− y ≥ 0 and y − f(x) ≥ 0, and thus,

• to F (x) ≤ 0, where F (x)
def
= min(y − f(x), f(x) − y),

and
• to −F (x) ≤ 0.
According to one of the known results about computable

sets which are listed above, for every ε > 0, there exists a
η ∈ (0, ε) for which the set {x : −F (x) ≤ η} is computable.

The inequality −F (x) ≤ η is equivalent to F (x) ≥ −η. The
smallest F (x) of the two numbers y − f(x) and f(x)− y is
greater than or equal to −η if and only if both these numbers
are ≥ −η, i.e., if and only if y − f(x) ≥ −η and

f(x)− y ≥ −η.

Here:
• the first inequality is equivalent to f(x) ≤ Y , where Y def

=
y + η is ε-close to y;

• the second inequality is equivalent to Y ≤ f(x), where
Y

def
= y − η is ε-close to y.

Thus, the inequality −F (x) ≤ η is equivalent to

Y ≤ f(x) ≤ Y .

Hence, the set

{x : Y ≤ f(x) ≤ Y } = {x : −F (x) ≤ η}

is indeed computable. The proposition is proven.

Second problem: discussion and results. In the above first
constraint processing problem, we had numbers (thresholds),

so we described the softness of the corresponding constraint
by allowing to slightly modify these numbers.

In the second constraint processing problem, we do not have
thresholds, we only have sets, so we need to be able to modify
sets.

Such a modification is possible if we take into account that
each closed set S can be described as {x : d(x, S) = 0},
i.e., equivalently, as {x : d(x, S) ≤ t}, where t = 0.
This description allows us to generate an approximate set by
slightly modifying the corresponding threshold t.

Definition 4. For each set S and for each real number η > 0,
by an η-neighborhood Nη(S), we means the set

{x : d(x, S) ≤ η}.

Comment. One can easily check that the η-neighborhood
Nη(S) of the set S is η-close to this set:

dH(S, dη(S)) ≤ η.

Proposition 6. There exists an algorithm that, given m
computable sets S1, . . . , Sm, and a computable real number
ε > 0, returns a computable number η ∈ (0, ε) for which the
intersection Nη(S1) ∩ . . . ∩Nη(Sm) is computable.

Proof. A tuple x belongs to the intersection

Nη(S1) ∩ . . . ∩Nη(Sm)

if and only if it belongs to all m η-neighborhoods Nη(Si),
i.e., if and only if d(x, Si) ≤ η for all i = 1, . . . ,m.

A sequence of m numbers d(x, Si) is smaller than or equal
to η if and only if the largest of them is smaller than or equal to
η. Thus, the intersection can be described as {x : F (x) ≤ η},
where F (x)

def
= max(d(x, S1), . . . , d(x, Sm)).

The maximum F (x) of m computable functions d(x, Si)
is computable. Thus, according to the above property of
computable sets, there exists an η ∈ (0, ε) for which the set
{x : F (x) ≤ η} is computable – and, as we have shown,
this set is exactly the desired intersection. The proposition is
proven.

Proposition 7. There exists an algorithm that, given com-
putable sets S ⊆ X and R ⊆ X × Y and a computable
real number ε > 0, returns a computable number η ∈ (0, ε)
for which the composition Nη(R) ◦Nη(S) is computable.

Proof. The condition that x ∈ S and (x, y) ∈ R can be
equivalently described as d(x, S) = 0 and d((x, y), R) = 0,
and thus, as max(d(x, S), d((x, y), R)) = 0.

So, the existence of such x ∈ S is equivalent to F (x) ≤
t
def
= 0, where F (y)

def
= min

x∈S
max(d(x, S), d((x, y), R)).

The function max(d(x, S), d((x, y), R)) is computable;
thus, F (y) is also computable, hence there exists an η ∈ (0, ε)
for which the set {y : F (y) ≤ η} is computable.

The inequality F (y) ≤ η, i.e.,

min
x∈S

max(d(x, S), d((x, y), R)),

is equivalent to the existence of x for which
max(d(x, S), d((x, y), R)) ≤ η, i.e., for which d(x, S) ≤ η
and d((x, y), R) ≤ η.

By the definition of a set neighborhood Nη(A):
• the first inequality d(x, S) ≤ η is equivalent to

x ∈ Nη(S), and

• the second inequality d((x, y), R) ≤ η is equivalent to
(x, y) ∈ Nη(R).

Thus, the condition F (y) ≤ η is equivalent to the existence
of x ∈ Nη(S) for which (x, y) ∈ Nη(R), i.e., to

y ∈ Nη(R) ◦Nη(S).

So, the computable set {y : F (y) ≤ η} is equal to the
composition Nη(R) ◦ Nη(S) – hence, this composition is
indeed computable. The proposition is proven.

Proposition 8. There exists an algorithm that, given com-
putable S ⊆ X , A, and D, a computable function f(x, a),
and a computable real number ε > 0, returns a computable
number η ∈ (0, ε) for which the set

{a ∈ A : f(x, a) ∈ Nη(D) for all x ∈ S}

is computable.

Proof. The condition that f(x, a) ∈ D is equivalent to
d(f(x, a), D) ≤ t = 0. Thus, the requirement that this
inclusion holds for all x ∈ S is equivalent to F (a) ≤ t, where

F (a)
def
= max

x∈S
d(f(x, a), D).

The function F (a) is computable; thus there exists a com-
putable value η ∈ (0, ε) for which the set {a ∈ A : F (a) ≤ η}
is computable.

The condition F (a) = max
x∈S

d(f(x, a), D) ≤ η is equivalent

to the condition that d(f(x, a), D) ≤ η for all x ∈ S, i.e., to
the condition that for all x ∈ S, we have f(x, a) ∈ Nη(D).
The proposition is proven.

V. WHAT IF SOME MEASUREMENTS ARE FAULTY

Formulation of the problem. In the above analysis, we
assumed that all the measurements are reliable. In this case, if
we denote by Si the set of all the states which are consistent
with the i-th measurements, we can conclude that the actual
state belong to the intersection S1 ∩ . . .∩Sm of all these sets.

A measuring instrument is rarely 100% reliable. Sometimes,
it mis-performs, resulting in a numerical value which is far
away from the actual value of the corresponding physical
quantity.

For example, when we measure a distance from an underwa-
ter autonomous robot to a beacon, we get a wrong result when
instead of the sonar signal coming directly from the beacon,

we observe the signal which was first reflected against some
external surface; see, e.g., [6].

Usually, we know the reliability of the measuring instru-
ment, i.e., we know what fraction of measurement results is
unreliable. If this fraction is 10%, then we know that at least
90% of the measurements are correct. In general, based on the
total number m of measurements and the fraction of faulty
ones, we can estimate the number q of correct measurements.
This way, we know that out of m measurements, at least q
are correct. Thus, for some subset I ⊆ {1, . . . ,m} of size
|I| = q, the actual state s belongs to the intersection

∩
i∈I

Si.

The overall set S of possible states is thus equal to

S =
∪

I:|I|=q

(∩
i∈I

Si

)
.

This set is called q-relaxed intersection [6].

The corresponding set is still computable – if we take into
account that constraints are soft. Under hard constraints, the
corresponding set S is, in general, not computable – indeed,
we have shown that it is not computable even when q = m.

Under soft constraints, the desired set S is computable:

Proposition 9. There exists an algorithm that, given m com-
putable sets S1, . . . , Sm, an integer q ≤ m, and a computable
real number ε > 0, returns a computable number η ∈ (0, ε)

for which the set
∪

I:|I|=q

(∩
i∈I

Nη(Si)

)
is computable.

Proof. A tuple x belongs to each intersection
∩
i∈I

Nη(Si) if it

belongs to all q η-neighborhoods Nη(Si), i.e., if and only if
d(x, Si) ≤ η for all i ∈ I .

A sequence of q numbers d(x, Si) is smaller than or equal to
η if and only if the largest of them is smaller than or equal to
η. Thus, x belongs to the intersection if and only if FI(x) ≤ η,
where FI(x)

def
= max

i∈I
d(x, Si).

A tuple x belongs to the set
∪

I:|I|=q

(∩
i∈I

Nη(Si)

)
if it

belongs to one of the intersections, i.e., equivalently, if one
of the value FI(x) is smaller than or equal to η. One of the
values FI(x) is smaller than or equal to η if and only if the
smallest of these numbers does not exceed η, i.e., if and only
if F (x) ≤ η, where F (x) = max

I:|I|=q
FI(x).

Each minimum FI(x) of q computable functions d(x, Si) is
computable. Therefore, the maximum F (x) of finitely many
computable functions is also computable. Thus, according to
the above property of computable sets, there exists an η ∈
(0, ε) for which the set {x : F (x) ≤ η} is computable – and,
as we have shown, this set is exactly the desired union of
intersections. The proposition is proven.

Discussion. While the desired set is computable, the above
algorithm requires us to consider as many functions are there
are subsets i of size q – and this number, for q = k · m,
exponentially grows with m. So, while the algorithm is pos-
sible, the above algorithm is clearly not feasible, since for

even medium-size m ≈ 300, the corresponding number 2m of
computational steps exceeds the lifetime of the Universe.

Is this because our algorithm is not perfect, or is this because
the problem itself is complex? Our answer – as described by
the following proposition – is that the itself problem is really
complex, even for linear constraints. Specifically, we prove
that this problem is NP-hard – i.e., that it is harder than all the
problems from the reasonable class NP, in the sense that every
problem form the class NP can be reduced to our problem;
for exact definitions, see, e.g., [4], [9], [12]. Most computer
scientists believe that P̸=NP, and thus, that it is not possible
to have a feasible algorithm for solving an NP-hard problem.

Proposition 10. The following problem is NP-hard:
• given a set of m linear constraints and an integer q,
• produce the set of all the tuples which satisfy at least q

out of m constraints.

Proof. The following subset sum problem is known to be NP-
hard: given n + 1 positive integers s1, . . . , sn, and S, check
whether S can be represented as a sum of some of the values
si. Equivalently, we need to check whether it is possible to

find values xi ∈ {0, 1} such that
n∑

i=1

si · xi = S.

To prove that our problem is NP-hard, let us reduce the
subset sum problem to our problem. Since the subset problem
is NP-hard, this means that every problem from the class NP
can be reduced to the subset sum problem; thus, if we can
reduce the subset sum problem to our problem, it will follow
that all problems from the class NP can be reduced to our
problem – and thus, that our problem is indeed NP-hard.

Let us describe the desired reduction. For each set of values
s1, . . . , sn, S, let us form the following linear constraints:

x1 = 0;x1 = 1; . . . xn = 0;xn = 1;

n∑
i=1

si · xi = S (repeated n times); y = 0.

We require that out of these m = 3n+ 1 constraints, at least
q = 2n are satisfied. We are interested in finding the set of all
possible values y under this requirement.

The above 3n+ 1 constraints consist of three groups:
• the first 2n constraints are of the form xi = 1 or xi = 1;
• then, we have the same sum constraint repeated n times;
• and finally, we have an additional constraint y = 0.

Since each value xi can be either 0 or 1 but not both, for each
i, at most one of the constraints xi = 1 and xi = 0 can be
satisfied. Thus, out of the first 2n constraints, at most n can
be satisfied, and if exactly n are satisfied, then each value xi

is equal to either 0 or 1.
Since at most n constraints from the first group can be

satisfied, the sum constraint has to be satisfied – otherwise,
we will get at most n+ 1 < 2n constraints. So:

• If the subset sum problem has a solution, that we can get
2n constraints by selecting appropriate values xi. In this
case, the variable y can attain any value.

• On the other hand, if the subset sum problem does not
have a solution, this means that we cannot have 2n
constraints satisfied by simply picking appropriate values
xi ∈ {0, 1}. Thus, to satisfy at least q = 2n constraints,
we must invoke the constraint y = 0.

Hence:

• if the given instance of the subset sum problem has a
solution, then y can take any value;

• otherwise, if the given instance of the subset sum problem
does not have a solution, then y can only take value 0.

So, if we know the range of possible values of y, we can
check whether the given instance of the subset problem has a
solution.

Thus, solving this particular case of our problem is equiva-
lent to solving the given instance of the subset sum problem.
This reduction proves that our problem is indeed NP-hard. The
proposition is proven.

Application. A practical example of this approach is given
in [6]: a problem of 2D-localization of a mobile underwater
robot. To locate the robot, stationary sonars placed at known
locations periodically send a ping signal in all directions;
they send signals one after another, so that signals from
different sonars do not get mixed up. When the sonar’s signal
reaches the robot, this signal gets reflected, and part of the
reflected signal gets back to the emitting sonar. The sonar then
measures the signal’s “travel time” as the difference between
the emission time and the time when the sonar received the
reflected signal. During this travel time, the signal traveled
to the robot and back. So, the overall path of the signal is
double the distance di from the robot to the corresponding
sensor i. Once we know the speed of sound, we can multiply
the measured time interval by this speed, divide by two, and
get the distance di to the robot.

In practice, we need to detect the reflected signal against
the ever-present noise. Because of the noise, we can only
determine the moment when the reflected signal appeared with
some accuracy – thus, we can only measure the distance di
with some accuracy. The manufacturer’s specification for the
sonar provide us with the upper bound ∆ on the corresponding
measurement error (provided, of course, that we are observing
the reflection from the robot and not from some other object).
Thus, if the measured distance to the i-th sonar is d̃i, then
the actual (unknown) distance di can take any value from the
interval [d̃i −∆, d̃i +∆].

For each sonar, we thus conclude that the robot is located
in the ring Si formed by the two circles centered around this
sonar: the ring between the circle corresponding to distance
d̃i − ∆ and the circle corresponding to the distance d̃i + ∆.
If all the recorded values d̃i corresponded to the robot, then
we could find the set S of possible locations of the robot
as the intersection of the sets Si corresponding to all m
sonars. In real life, some measurements do come from other
objects; in this case, some of the sets Si reflect locations of
these other objects, and thus, the overall intersection may be

empty. We therefore need to take into account that some of
the measurements are faulty.

To locate the robot, we use a Guaranteed Outlier Minimal
Number Estimator (GOMNE) described in [5], [7], [8]. This
algorithm first finds the largest possible value q for which the
intersection of q sets Si is non-empty, then finds the corre-
sponding q-relaxed intersection. To compute the corresponding
intersections, GOMNE uses SIVIA (Set Inversion via Interval
Analysis), an algorithm described in [5].

Simulations show that in more than 90% of the cases, the
resulting algorithm finds the correct location of the robot,
which is much more efficient than for the previously known
methods of locating underwater robots.

ACKNOWLEDGMENT

This work was supported in part by the US National
Science Foundation grants 0953339, HRD-0734825 and HRD-
1242122 (Cyber-ShARE Center of Excellence) and DUE-
0926721. The work was performed when Quentin Brefort was
visiting the University of Texas at El Paso. This visit was
supported by ENSTA-Bretagne.

REFERENCES

[1] E. Bishop and D. S. Bridges, Constructive Analysis, Springer, New York,
1985.

[2] M. Ceberio and V. Kreinovich (eds.), Constraint Programming and
Decision Making, Springer Verlag, Berlin, Heidelberg, 2014.

[3] R. Dechter, Constraint Processing, Morgan Kaufmann, San Francisco,
California, 2003.

[4] M. E. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, San Francisco, 1979.

[5] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
Springer Verlag, London, 2001.

[6] L. Jaulin, A. Stancu, and B. Desrochers, “Inner and outer approximations
of probabilistic sets”, Proceedings of the American Society of Civil
Engineers (ASCE) Second International Conference on Vulnerability and
Risk Analysis and Management ICVRAM’2014 and Sixth International
Symposium on Uncertainty Modelling and Analysis ISUMA’2014, Liv-
erpool, UK, July 13–16, 2014, to appear.

[7] L. Jaulin and E. Walter, “Guaranteed robust nonlinear minimax estima-
tion”, IEEE Transaction on Automatic Control, 2002, Vol. 47, No. 11,
pp. 1857–1864.

[8] L. Jaulin, E. Walter and O. Didrit, “Guaranteed robust nonlinear param-
eter bounding”, Proceedings of Symposium on Modelling, Analysis and
Simulation, part of IMACS Multiconference on IMACS Multiconference,
Computational Engineering in Systems Applications CESA’96, Lille,
France, July 9–12, 1996, Vol. 2, pp. 1156–1161.

[9] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Com-
plexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, 1998.

[10] B. A. Kushner, Lectures on Constructive Mathematical Analysis, Amer.
Math. Soc., Providence, Rhode Island, 1984.

[11] C. Lecoutre, Constraint Networks: Techniques and Algorithms, ISTE,
London, UK, and Wiley, Hoboken, New Jersey, 2009.

[12] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

[13] M. Pour-El and J. Richards, Computability in Analysis and Physics,
Springer-Verlag, New York, 1989.

[14] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and
Practice, Springer Verlag, Berlin, 2005.

[15] E. Tsang and T. Fruehwirth, Foundations of Constraint Satisfaction,
Books On Demand Publ., 2014.

[16] K. Weihrauch, Computable Analysis, Springer-Verlag, Berlin, 2000.

