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Abstract—In many practical situations, we need, given the
values of the observed quantities x1, . . . , xn, to predict the value
of a desired quantity y. To estimate the accuracy of a prediction
algorithm f(x1, . . . , xn), we need to compare the results of this
algorithm’s prediction with the actually observed values.

The value y usually depends not only on the values x1, . . . , xn,
but also on values of other quantities which we do not measure.
As a result, even when we have the exact same values of the
quantities x1, . . . , xn, we may get somewhat different values of
y. It is often reasonable to assume that for each combinations of
xi values, possible values of y are normally distributed, with some
mean E and standard deviation σ. Ideally, we should predict both
E and σ, but in many practical situations, we only predict a single
value ỹ. How can we gauge the accuracy of this prediction based
on the observations?

A seemingly reasonable idea is to use crisp evaluation of
prediction accuracy: a method is accurate if ỹ belongs to a k0-
sigma interval [E−k0 ·σ,E+k0 ·σ], for some pre-selected value k0
(e.g., 2, 3, or 6). However, in this method, the value ỹ = E+k0 ·σ
is considered accurate, but a value E+(k0+ε)·σ (which, for small
ε > 0, is practically indistinguishable from ỹ) is not accurate. To
achieve a more adequate description of accuracy, we propose to
define a degree to which the given estimate is accurate.

As a case study, we consider predicting at-risk students.

I. FORMULATION OF THE PROBLEM

Predictions are needed. In many practical situations, we want
to be able to predict the value y of some quantity based on
the values x1, . . . , xn of several measurable quantities xi.

Examples. For example, we may want to predict tomorrow’s
weather based on today’s observations and based on the
weather records of this and previous years.

Another example is that at a university, it is important to
be able to predict first-year performance of students, so that
special attention can be applied to students who face a risk of
failing, to prevent this failure.

Estimating prediction accuracy: a general problem. How
can we gauge the accuracy of different prediction methods
f(x1, . . . , xn)?

General idea of estimating prediction accuracy: compare
predictions with actual results. A natural way to estimate

the prediction accuracy is consider cases k = 1, . . . ,K in
which we already know the corresponding values y(k), and
to compare theses actual values with the results ỹ(k) =

f
(
x
(k)
1 , . . . , x

(k)
n

)
of applying the given prediction method

f(x1, . . . , xn) to the corresponding inputs.

Advantage of discrete inputs. In general, the accuracy of
a prediction method depends on the inputs. For example,
methods of weather prediction are usually more accurate when
predicting typical weather and become less accurate when the
weather switches to rare unusual patterns. Therefore, ideally,
we should estimate prediction accuracy for give values of the
inputs x = (x1, . . . , xn).

This is not easy to do for continuous inputs, since when the
inputs are continuous, the values of each input xi are different
in different situations; so, strictly speaking, for each observed
combination of inputs x = (x1, . . . , xn), there are no other
observations with the exact same combination.

From this viewpoint, there is a definite advantage in having
discrete inputs, in which each variable xi has finitely many
possible values. In this case, there are only finitely many
possible combinations x = (x1, . . . , xn), and thus, when
we have sufficiently many observations, we will have several
observations corresponding to the each input combination.

Estimating prediction accuracy: case of discrete inputs.
In this paper, we concentrate on discrete inputs. For discrete
inputs, if we have sufficiently many observations, we can
estimate the prediction accuracy for each combination of
inputs x = (x1, . . . , xn).

In the following text, we will assumed that a combination
x = (x1, . . . , xn) is fixed. For this combination, we have a
value ỹ predicted by the prediction methods, and we have
values y(1), . . . , y(K) observed for different situations with the
given input values x1, . . . , xn.

II. CASE STUDY: PREDICTING AT-RISK STUDENTS

Case study: description. In this paper, we analyze the per-
formance of first-time undergraduate students who started in



fall semester at our university. The sample contains 14,558
first-time, degree-seeking undergraduate students who entered
the institution in 2003 to 2008 fall semesters.

Students data were collected by the authors’ institution’s
Center for Institutional Evaluation, Research & Planning
(CIERP). Some of the data comes the centralized database
used by the institution and some from the data from a survey
that had originally been used to gather information about the
inc0oming students.

What we want to predict. A usual measure of a student
performance is his or her average grade. In the US academic
system, such an average is known as Grade Point Average
(GPA). For each class i, a student gets a numerical grade gi
which is usually equal to 0, 1, 2, 3 or 4, with 4 being the best.
Each class is characterized by the number ci of “credit hours”,
usually the number of contact hours per week in a regular-
length semester. The GPA g is then defined as a weighted
average

g =

∑
i

ci · gi∑
i

ci
.

Comment. Since we want to predict a student’s GPA, we have
to exclude students who dropped all the classes during their
first semester without earning any grades. After excluding
students without first-year GPA, we are left with a total of
12,062 students in the sample data set.

Which parameters xi are used to predict y. The main
objective of our study was to improve the prediction methods
which are currently used by CIERP. Because of this objective,
for our prediction, we used the same four quantities that
CIERP currently uses in their prediction model (based on [7])
Each student’ record in the data set contains the following
information:

• the variable x1 related to the student’s score on the math
placement exam; this score can have five different values
values 0, 1, 2, 3, and 4; it is known that this score is
correlated with the student success; see, e.g., [4];

• the variable x2 represents a student’s high school per-
centile; it can take any of the 101 values 0, 1, . . . , 100;
high school performance is also known to be a strong
predictor of first-year college performance; see, e.g., [2];

• the variable x3 represents the number of hours that a
student plans to work outside the school; this number
was taken from a survey, in which students had to mark
one of the following five options:

– not planning to work;
– working for less than 20 hours per week;
– working 20–29 hours;
– working 30–39 hours; and
– working 40 hours or more per week;

• the “yes”-“no” variable x4 describes whether a student
delayed his/her graduation from high school; this also
affects the student success; see, e.g., [6].

Overall, there can be 5·101·5·2 =5,050 possible combinations
of these inputs. In practice, some combinations are rare,
so we observed only 1,404 combinations. So, if we divide
students into groups corresponding to different combinations
x = (x1, . . . , x4) of input values, then, out of 12,062 students,
we have, on average, 9 students in each group. Actually, some
groups have only 1 student, while other have up to 45 students.

Comment. It is worth mentioning that the prediction can
become slightly more accurate if we also take into account the
student’s gender and whether a student belongs to the under-
represented minority group.

What we did. In [8], we developed non-linear models that
use Choquet integrals to predict the first-year GPA.

III. ANALYSIS OF THE PROBLEM

Why do we have different values of y for the same input.
In order to properly solve the problem of estimating prediction
accuracy, it is important to first understand why for the exact
same values of all the inputs x1, . . . , xn, we observe different
values of the quantity y.

Both above examples clearly show why the observed values
y(k) (1 ≤ k ≤ K) are, in general, different: because in reality,
the value y depends not only on the values of x1, . . . , xn, but
also on many other values. For example, first-year university
success also depends:

• on family support (which is often lower for first-
generation students),

• on whether a student him/herself has children to take care
of,

• on how far away from the university the student lives,
• etc.

How to describe the difference in y. Many different factors
influence the prediction. In other words, the difference be-
tween different actual values y(k) corresponding to the same
combination of inputs x = (x1, . . . , xn) is caused by the joint
effect of many independent factors – factors each of which
has a relatively small effect on this difference. In statistics,
such a situation is captured by the Central Limit Theorem,
according to which such joint effects lead to normal (Gaussian)
distribution; see, e.g., [5].

It is therefore reasonable to conclude that the values y(k)

(1 ≤ k ≤ K) corresponding to the same inputs x =
(x1, . . . , xn) are normally distributed. It is known that to
describe a 1-D normal distribution, it is sufficient to know
the mean E and the standard deviation σ; in this case, the
corresponding probability density function has the form

ρE,σ(y) =
1√

2π · σ
· exp

(
− (y − E)2

2σ2

)
. (1)

Ideal prediction vs. real prediction. In view of the above,
ideally, we should predict both:

• the mean value E of the desired quantity y, and



• the standard deviation σ that describes how the observed
values y(k) differ from this mean E.

In practice, however, most prediction methods predict only
one value: the “typical’ value ỹ. In this case, a natural question
is: how good is this prediction?

IV. ESTIMATING PREDICTION ACCURACY: CRISP
APPROACH

Main idea. From the purely theoretical viewpoint, the prob-
ability density (1) corresponding to a normal distribution is
always positive, which means that it is theoretically possible
to observe values which are far away from the mean E.

In practice, however, it is known that with a very high
probability, the random value y lies within a k0-sigma interval
[E−k0 ·σ,E+k0 ·σ] for an appropriate k0 = 2, 3, 6, etc. For
example:

• for k0 = 2, we have y ∈ [E − k0 · σ,E + k0 · σ] with
probability ≈ 95%;

• for k0 = 3, we have y ∈ [E − k0 · σ,E + k0 · σ] with
probability ≈ 99.7%;

• for k0 = 6, we have y ∈ [E − k0 · σ,E + k0 · σ] with
probability ≈ 1− 10−8.

It is therefore reasonable to select k0 and check whether the
estimate ỹ is within the corresponding k0-sigma interval:

• If the value ỹ is within the k0-sigma interval, we consider
the prediction to be accurate.

• If the value ỹ is outside the k0-sigma interval, we consider
the prediction to be inaccurate.

Comment. The above crisp criterion describes whether a given
prediction algorithm f(x1, . . . , xn) is accurate for a given
input x = (x1, . . . , xn). To gauge how accurate the method
is in general, we can use, e.g., the percentage of inputs for
which the predictions as accurate in the above sense.

Mathematical comment. It is worth mentioning that for a group
of small size K, we have more strict limitations on the number
of samples within a k0-sigma interval. Indeed, the standard
deviation is usually estimated as

σ2 =
1

K − 1
·

K∑
k=1

(
y(k) − E

)2

. (2)

Since the sum is greater than or equal than the largest value

∆
def
= max

k

∣∣∣y(k) − E
∣∣∣ , (3)

we thus conclude that
K∑

k=1

(
y(k) − E

)2

≥ ∆2,

and therefore,
σ2 ≥ 1

K − 1
·∆2. (4)

Multiplying both sides of this inequality by K − 1, we get

∆2 ≤ (K − 1) · σ2, (5)

and therefore,
∆ ≤

√
K − 1 · σ. (6)

By definition (3) of the maximum ∆, all the values y(k) lie
within the interval [E − ∆, E + ∆]. So, all these values lie
within the interval

[E −
√
K − 1 · σ,E +

√
K − 1 · σ] (7)

corresponding to k0 =
√
K − 1. Thus:

• when K ≤ 5, we have
√
K − 1 ≤ 2 and thus, all

observed values lie within the two-sigma interval;
• when K ≤ 10, we have

√
K − 1 ≤ 3 and thus, all

observed values lie within the three-sigma interval;
• when K ≤ 37, we have

√
K − 1 ≤ 6 and thus, all

observed values lie within the six-sigma interval.

Limitations of the crisp approach. As usual, the prob-
lem with above crisp approach is that we get a “yes”-“no”
characterization of the prediction accuracy, and this does not
adequately express the intuitive idea of accuracy. For example,
if we select k0 = 2, then:

• we classify the estimate ỹ = E + 2σ as accurate, while
• a nearby value E + (2+ ε) · σ is not accurate, no matter

how small the value ε > 0 we take.
From this practical viewpoint, when the value ε is suf-

ficiently small, there is no practical difference between the
estimates E+2σ and E+(2+ ε) ·σ, so different conclusions
about prediction accuracy make no sense.

Natural idea. A natural idea is to take into account that
whether a prediction method is accurate or not is a matter of
degree. In other words, a natural idea is to use fuzzy techniques,
techniques which were specifically designed to capture such
degrees; see, e.g., [1], [3], [9].

V. ESTIMATING PREDICTION ACCURACY: FUZZY
APPROACH

Idea. We would like to estimate the degree µE,σ (ỹ) to which,
for given E and σ, an estimate ỹ is a “typical” representative
of the corresponding Gaussian random variable.

It is reasonable to require that when ỹ = E, then this degree
is the largest, i.e. (since fuzzy sets are usually calibrated in
such a way that the largest degree is 1), we should have

µE,σ(E) = 1. (8)

It is also reasonable to require that the smaller the probabil-
ity that a value ỹ can actually appear as a random outcomes
y(k), the smaller the degree to which this value is typical. The
simplest way to satisfy this requirement is to make the degree
µE,σ(y) proportional to the corresponding probability density
ρE,σ(y), i.e., to take

µE,σ(y) = C · ρE,σ(y), (9)

for some constant C. This constant must be determined from
the previous requirement (8), which for the expression (9)
takes the form

C · ρE,σ(E) = 1. (10)



Thus,
C =

1

ρE,σ(E)
, (11)

and so, the formula (9) takes the form

µE,σ(y) =
ρE,σ(y)

ρE,σ(E)
. (12)

Substituting the expression (1) into this formula (12), we arrive
at the following conclusion.

Resulting formula.

µE,σ(y) = exp

(
− (y − E)2

2σ2

)
. (13)

Discussion. The corresponding Gaussian membership function
is actively used in fuzzy applications; see, e.g., [1], [3].
Our experience shows that it indeed leads to an intuitively
reasonable estimates of prediction accuracy [8].
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