
Fuzzy Measure Extraction for Software Quality
Assessment as a Multi-Criteria Decision-Making

Problem
Xiaojing Wang∗, Martine Ceberio†, Shamsnaz Virani‡, Christian Del Hoyo§, Luis Gutierrez§

Computer Science Department
The University of Texas at El Paso, El Paso, Texas 79968-0518

∗ xwang@utep.edu, † mceberio@utep.edu, § cdelhoyo@miners.utep.edu, ¶ lcgutierrez@miners.utep.edu
‡ Engineering Division, Penn State Great Valley

School of Graduate Professional Studies, Malvern, PA 19355
Email: ssv1@psu.edu

Abstract—Being able to assess software quality is
essential as software is ubiquitous in every aspect of
our day-to-day lives. In this paper, we rely on existing
research and metrics for defining software quality and
propose a way to automatically assess software quality
based on these metrics. In particular, we show that
the software quality assessment problem can be viewed
as a multi-criteria decision-making (MCDM) problem.
In Multi-Criteria Decision Making (MCDM), decisions
are based on several criteria that are usually conflicting
and non-homogenously satisfied. Non-additive (fuzzy)
measures along with the Choquet integral can be used:
they model and aggregate the levels of satisfaction of
these criteria by considering their relationships. How-
ever, in practice, it is difficult to identify such fuzzy
measures. An automated process is necessary and can
be used when sample data is available. We propose
to automatically assess software by modeling experts’
decision process: to do this we automatically extract the
corresponding fuzzy measure from samples of the tar-
get experts’ decision. We were able to improve previous
approaches to automatic software quality assessment
that used machine learning techniques.

I. Introduction
Pfleeger summarizes software quality assessment in

three ways [16]:
1) The quality of product;
2) The quality of process; and
3) The quality in the context of the business environ-

ment.
This paper focuses on software product quality assess-

ment based on direct measurements of code properties.
Software product quality is important because software is
present in every aspect of normal day-to-day life. Software
problems such as server breakdowns, software crashes,
and data leaks have become common occurrences. Pre-
existing software problems do not stop software spending.
Even though there are large amounts of money spent
on developing software, the quality of this software still
remains a mystery. The obvious questions therefore are:
what is software quality and how is it measured?

In this paper, we rely on existing research and metrics
for defining software quality, as presented in Section II.
Once metrics adopted, it is relatively easy to decide, for
each metrics, which piece of software is better than the
others based on the measure / satisfaction level related to
the corresponding metrics. However, even so, the problem
of assessing software quality based on several metrics
remains since it constitutes a complex decision involving
several criteria (based on metrics such as length of code,
number of classes, inter-dependence of classes).

Experts are used to assess software quality, but it is
desired that this process could be automated so as to
ensure the consistency of the assessments as well as its
timeliness (e.g., on-the-fly assessment). Such a task has
been tackled previously by Fuentes et al. [15] using a
machine learning approach. In this article, we show that
the software quality assessment problem can be viewed as
a multi-criteria decision-making (MCDM) problem, and
we propose to extract experts’ decision process using
Fuzzy Measure Extraction for MCDM.

In what follows, we start by reviewing the state of the
art in Software Quality and Software Quality Assessment
(Section II). We then provide information about theo-
retical topics that are central to our MCDM approach
(Section III) and we show how SQA and MCDM are
related, with details about our specific approach (Sec-
tion IV). We tested our approach: our strategy along
with our experimental results and analysis are provided
in Section V. Finally, we conclude and draw directions for
future work in Section VI.

II. Software Quality Assessment (SQA):
Definitions, Current Status, and Existing

Techniques

A. SQA: definitions and current status
Pressman defined software quality as “Conformance to

explicitly stated functional and performance requirements,
explicitly documented development standards and implicit



characteristics that are expected of all professionally de-
veloped software” [19].

This definition addresses two aspects of software quality.
The first is conformance to explicitly stated functional
and performance requirements and explicitly documented
development standards. These can be found in the require-
ments document developed between the customer and
client. This requirement can be measured by counting the
number of columns and comparing the data type to that
stated in the requirements data. The performance require-
ments are also measurable. For example, the time a soft-
ware product takes to complete a given task is a measure
of performance. Functional and performance requirements
and explicitly documented development standards are thus
measurable.

The second aspect of software quality addressed in this
definition is the implicit characteristics of all profession-
ally developed software. These are characteristics such as
reusability or flexibility. These implicit characteristics are
also known as quality factors. Most software engineers,
programmers and managers believe that software quality
factors are best judged by experts. However, research has
shown that expert judgments are often inconsistent and
subjective. For example, experts such as Lorenz and Kidd
considered multiple inheritances (software property) as a
sign of bad quality code, but multiple inheritance is widely
accepted in the programming community ([10]). Inconsis-
tent expert opinion makes judgment of implicit character-
istics such as reusability difficult. There is no quantitative
measurement for quality factors such as reusability. This
subjective aspect of software quality results in making
software quality management difficult.

Solid information regarding the quality of the software
product is difficult to estimate. There is currently no tool
or process that uses quantitative information to calculate
quality factors for software products. This lack of solid
information creates problems with software project man-
agement.

Sommerville elaborates that software quality manage-
ment is difficult because of the two different aspects of
software quality [20]. The explicit aspect of software qual-
ity is to some extent measurable, but the implicit aspect of
software quality is solely based on expert opinion which is
frequently inconsistent. There is a need to directly measure
the implicit aspect of software quality.

To understand the subjective estimates and the mea-
surements, it is important to understand the software
quality research.

Theoretical models define several quality factors such as
reusability and flexibility but do not quantify them. Pre-
dictive models are models based on statistical techniques
that predict characteristics such as fault density or fault
proneness using direct measurements from code (product
metrics). Predictive models predict the faults but have no
theoretical evidence to support causality. One solution to
remedy this problem is to add prediction capability to a

theoretical model. Quality factors defined in a theoretical
model are not measurable and hence cannot be predicted.
One theoretical software quality model that defined the
quality factors and linked all of them to measurable met-
rics in object-oriented software was Bansiya and Davis’s
model [2]. Bansiya and Davis’ model is more complete than
other theoretical software quality models, so it was chosen
for analysis here. Bansiya and Davis’s model defines the
quality factors and links them to QMOOD set of metrics
defined in Table I.

Although the Bansiya and Davis model provides a
solid explanation for the design quality of object-oriented
design, it presents some limitations. The major problems
with the Bansiya and Davis model are their validation
process, data used in the research and lack of prediction
capability.

B. SQA: Existing Techniques
Machine learning is an important aspect in predicting

software product quality because the more a classifier
can learn, the better decisions it will make in building
a predictive model [12]. Osbeck et al improved the
prediction capability using J48, Part, and Random
Forest, and the ensemble learning techniques examined
were boosting, bagging, and stacking [15].

In our work, we show that SQA can be seen as a Multi-
Criteria Decision-Making Problem problem and solved
accordingly, and that, therefore, software product quality
can be predicted by using fuzzy measures and Choquet
integral.

III. Theoretical Background
In this section, we introduce important theoretical con-

cepts necessary to later understand how SQA can be
viewed as a Multi-Criteria Decision Making (MCDM)
problem as well as why Fuzzy Measure Extraction (FME)
needs to be carried out.

A. Multicriteria Decision Making (MCDM)
Multicriteria decision making (MCDM) is the making

of decisions based on multiple attributes (or criteria).
Usually, it consists of a set of consequences, a finite set
of n criteria (or attributes), and a preference relation �
on the set of consequences.

The set of consequences X is a multidimensional space,
where X ⊆ X1 × · · · × Xn, and each Xi represents a set
of values of attribute i, where i ∈ {1, · · · , n}. For each
criterion (or attribute), there is a preference relation �i

on each space Xi, such that for xi, yi ∈ Xi, xi �i yi means
that xi is preferred to yi. Then, the preference relation of
a consequence for all criteria can be combined, using an
aggregation operator, into a global value such that the final
level of satisfaction of the consequences follows the partial
preferences. A preference over the set of consequences X
will be denoted as: ∀x, y ∈ X, x � y or y � x.



TABLE I
QMOOD model [2]

Quality Factor Definition Bansiya and Davis’s Model Metric Definition (QMOOD metric)
Reusability
Reflects the presence of object
oriented design characteristics that
allow a design to be reapplied to a
new problem without significant effort.

-0.25 * Coupling + 0.25 * Co-
hesion + 0.5*Messaging +0.5*
Design Size

Design Size (DSC)
A measure of number of classes used in the design.
Hierarchies (NOH)
Hierarchies are used to represent different
generalization-specialization aspects of the design.
Abstraction (ANA)
A measure of generalization-specialization aspect of
design.
Encapsulation (DAM)
Defined as the enclosing of data and behavior within
a single construct.
Coupling (DCC)
Defines the inter dependency of an object on other
objects in a design.
Cohesion (CAM)
Accesses the relatedness of methods and attributes in
a class.
Composition (MOA)
Measures the “part-of”, “has”, “consists-of”, or
“part-whole” relationships, which are aggregation
relationships in object oriented design.
Inheritance (MFA)
A measure of the “is-a” relationship between classes.
Polymorphism (NOP)
It is a measure of services that are dynamically
determined at run-time in an object.
Messaging (CIS)
A count of number of public methods those are
available as services to other classes.
Complexity (NOM)
A measure of the degree of difficulty in understanding
and comprehening the internal and external structure
of classes and their relationships.

Flexibility
Characteristics that allow the
incorporation of changes in a design.
The ability of a design to be adapted
to provide functionality related
capabilities.

0.25 * Encapsulation - 0.25 *
Coupling + 0.5 * Composition
+ 0.5 * Polymorphism

Understandability
The properties of designs that
enable it to be easily learned and
comprehended. This directly relates to
the complexity of design structure.

-0.33 * Abstraction + 0.33 *
Encapsulation - 0.33 * Cou-
pling + 0.33 * Cohesion -0.33
* Polymorphism - 0.33 * Com-
plexity - 0.33 * Design Size

Functionality
The responsibility assigned to the
classes of a design, which are made
available by classes through their
public interfaces.

0.12 * Cohesion + 0.22 * Poly-
morphism + 0.22 * Messaging
+ 0.22 * Design Size + 0.22 *
Hierarchies

Extendibility
Refers to their presence and usage of
properties in an existing design that
allow for the incorporation of new
requirements in the design.

0.5 * Abstraction - 0.5 * Cou-
pling + 0.5 * Inheritance +0.5
* Polymorphism

Effectiveness
This refers to the designs ability to
achieve the desired functionality and
behavior using object oriented design
concepts and techniques.

0.2 * Abstraction + 0.2 *
Encapsulation + 0.2*Composi-
tion + 0.2 * Inheritance + 0.2
* Polymorphism

The common aggregation operator being used is a
weighted sum; i.e.,

u(x) =
n∑

i=1
wiui(xi),

where wi is the weight of each criterion, representing the
importance of each criterion,

∑n
i=1 wi = 1, and ui(xi)

represents the level of satisfaction assigned to alternative
xi ∈ Xi. The best consequence (x ∈ X) is the one with the
highest value of u. Although this approach is simple, easy
to use, and low complexity, using an additive aggregation
operator assumes that all criteria are independent, which,
in practice, is seldom the case: often, decisions are based
on several conflicting criteria and using linear additive
aggregation will lead to possibly very counterintuitive
decisions. Non-linear approaches also prove to lead to so-
lutions that are not completely relevant. Therefore, using
additive approach is often not good: based on our previous
work [13], we choose to use non-additive approaches, i.e.,
fuzzy measures and integrals [3].

B. Fuzzy measures and integrals
Fuzzy measures are non-additive measures. They can be

used to represent the degree of interaction of each subset
of criteria [4]. In what follows, we consider a finite set of
criteria A = {1, · · · , n}.
Definition Let A be a finite set and P(A) the power set

of A. A fuzzy measure (or a non-additive measure) defined
on A is a set function µ : P → [0, 1] satisfying the following
axioms:
(1) µ(∅) = 0
(2) µ(A) = 1
(3) if X, Y ⊆ A and X ⊆ Y , then µ(X) ≤ µ(Y )
The fuzzy measures are used to show the importance of

each subset and how each subset of criteria interacts with
others. Fuzzy measures are expensive to determine: for a
set defined over n criteria, 2n values of a fuzzy measure
are needed because there are 2n subsets of A.

Two main integrals can be used to combine fuzzy
measures: the Sugeno and the Choquet integrals. Al-
though they are structurally similar, they are different
in nature [8]: the Sugeno integral is based on non-linear
operators and the Choquet integral is usually based on



linear operators. The applications of Sugeno and Choquet
integrals are also very different [14]: the Choquet integral
is generally used in quantitative measurements, and a
MCDM problem usually uses a Choquet integral as a
representation function. In this article, we focus on the
Choquet integral.

Definition Let µ be a fuzzy measure on A. The Choquet
integral of a function f : A → R with respect to µ is
defined by:

(C)
∫

A

fdµ =
n∑

i=1
(f(σ(i))− f(σ(i− 1)))µ(A(i))

where σ is a permutation of the indices in order to have
f(σ(1)) ≤ · · · ≤ f(σ(n)), A(i) = {σ(i), . . . , σ(n)} and
f(σ(0)) = 0, by convention.

C. Determining Fuzzy Measures
In MCDM, we would expect the decision maker to be

more than likely to give the values of the fuzzy measure,
but in most circumstances this is not the case. Attempts of
making fuzzy measure identification easier for the decision
makers have been made in [3], [22].

• In [3], the authors attempt to make this task easier by
only requiring the decision maker to give an interval
of importance for each interaction.

• In [22], the author suggests a diamond pair-wise com-
parison, where the decision maker only must identify
the interaction of 2 criteria using a labeled diamond.
From there, the algorithm evaluates the values of the
numeric weights.

• In [22], the author discusses user specified weights
mixed with an interaction index denoted λ or ξ.
This algorithm is applied using an online aggregation
application [21].

However, in most cases, the decision maker either does
not understand the interactions well enough to provide
a good value of each fuzzy measure, or does not have
constant access to an expert who may give all values of the
fuzzy measures. In addition, since there are 2n − 2 values
of a fuzzy measure for a problem with n criteria expert
identification: it would be too time consuming anyway to
be practical [7]. This is where fuzzy measure extraction
comes into play.

D. Fuzzy Measure Extraction (FME) and Optimization
For lack of an expert to provide all values of the fuzzy

measure, we need seed data to give us an idea of the
preferences / decision-making process: we use sample data.
Extracting fuzzy measure is performed starting from such
seed data.
Let’s take a look at the following situation: Our MCDM

problem involves n attributes, and m sample data. If we
knew the fuzzy measure µ̃, we would be able to compute
preference values ỹj as (C)

∫
A
fdµ̃ =

∑n
i=1(f(σ(i)) −

f(σ(i − 1)))µ̃(A(i)), where f is a utility function defined
on X.

However, with the sample data, we only have access to
the preference values of a subset of X. In order to have
access to preference values of other alternatives in X, we
need to determine µ, which is, the 2n − 2 values of the
fuzzy measure. We are going to determine µ such that
the corresponding computed Choquet integral is as close
to the preference values of the sample data as possible.
As a result, we aim at minimizing the following sum (and
getting as close to 0 as possible) [9]:

e =
m∑

j=0

(
ỹj −

n∑
i=1

(f(σ(i, j))− f(σ(i− 1, j)))µ(A(i))
)2

(1)
Moreover, the optimal solution must satisfy constraints:

fuzzy measures must be monotonic and must always be
between 0 and 1.

Therefore, fuzzy measure extraction is a constrained
optimization problem, and the candidate solutions must
be evaluated to make sure they fit the constraints.

Several optimization approaches have been proposed
to extract fuzzy measures, including Gradient Descent
methods [1], Genetic Algorithms [4], [27], and Neural Net-
works [24]. Besides these, many optimization techniques
exist, such as for instance Harmony Search [6], Particle
Swarm Optimization [18], Simulated Annealing [5].

However, the main drawbacks in these techniques are
that the returned solution (found minimum of the objec-
tive function) might just be a local minimum, or even
worse, a good value. There is no guarantee that it would
be the global minimum at all.

In previous work [26], we proposed to use a tuned ver-
sion of the Bees Algorithm [17] to extract fuzzy measures.
The results show promise of the approach, and although
the results were not guaranteed to be global (same draw-
back as pointed out of the other approaches), they were
consistently better than best approaches before this one.
In this work on SQA, we used the Bees Algorithm to
extract fuzzy measures that best model experts’ decision
processes.

In what follows, we first motivate why MCDM is re-
lated to SQA and how Fuzzy Measure Extraction can
help automate SQA. We then provide details about the
specific optimization technique we use for Fuzzy Measure
Extraction.

IV. Fuzzy Measures Extraction for Software
Quality Assessment using the Bees Algorithm
As hinted earlier, Software Quality Assessment can be

seen as a Multi-Criteria Decision-Making problem. The
straightforward reason for that is the following: the general
quality assessment (i.e., final decision of software) is based
on a set of metrics (i.e., multiple criteria).

As a result, based on what we presented about fuzzy
measures and Choquet integrals, if we can find an appro-
priate fuzzy measure µ, assessing the quality of software



can be expressed as follows:
SQA(software A) = Choquet(µ,metrics values(A))

Based on the above formula, we focus on determining
µ, which can be viewed as a quantitative model for the
expert’s decision-making process. It is obtained from seed
data, namely sample data of experts’ decisions with re-
spect to known pieces of software. As a result, in the above
3-body problem, two of the components are known: the
expert’s decision and the set of metrics values, and we
aim at determining the matching µ.

In practice, we have access to a number of such ex-
pert(s)’ decision values along with the corresponding sets
of metrics values for different pieces of software Ai. As
pointed out earlier, in Section III, determining µ consists
of solving the following problem:

min e =
∑

Ai
(SQA(Ai)− Choquet(µ,metrics(Ai)))2

s.t. µ satisfies monotonicity constraints

A. Our approach: the Bees Algorithm
The Bees optimization Algorithm, proposed in [17],

uses bees’ natural food foraging habits as a model for
the exploration of the search space. The Bees Algorithm
combines a local and “global” search that are both based
on bees natural foraging habits. It roughly unwinds as
follows:

1) First a number of “scout bees” are randomly sent
out.

2) The patches of “nectar” (elements of the search space
/ candidate values for the fuzzy measure) are then
ranked according to evaluated fitness. More bees
are dispatched to look in neighboring areas of good
patches of “nectar”.

3) At each iteration, a number of “scout bees” are kept
to explore other areas in hope of better patches of
“nectar”: this keeps the algorithm searching “glob-
ally”.

4) When a new patch is found, its fitness is evaluated
and compared against previously explored patches
and a proportional number of “bees” is sent to it.
The dispatched “bees” perform a local search by
moving in a random direction from the patch of
“nectar”.

5) If a local search “bee” finds a better patch of “nec-
tar”, the location from where it was dispatched is
moved to the new location [17]. The Bees Algo-
rithm performs local search by sending an amount
of “bees” that is proportional to the patch’s fitness.

It is believed that the best ranked “patch”, when a stop-
ping criterion is met, is the optimal solution, although
there is no theoretical guarantee for it. In [17], the Bees
algorithm, in most cases, was faster than a number of
other algorithms (including genetic algorithms, simplex
method, stochastic simulated annealing), and returned a
solution within .1% of the perfect solution every time run

(in particular up to 207 times faster than the Genetic
Algorithm on the benchmarks used). On their test cases,
the Bees algorithm was also always able to reach the global
optimum and ignore local optima.

V. Experiments
A. What do we want to show and how?

Through our experiments, we aim at quantifying the
performance of our approach in automatically predict
software quality. As hinted before, the algorithm we use to
extract fuzzy measures is the Bees algorithm, as it showed
promise in previous work [26].

The metrics we use are Quality Model for Object-
Oriented Design (QMOOD) metrics, as defined in [2] and
used by Virani et al [23]. In this work, we focused on the
metrics and the quality factors related to QMOOD model,
as in [2]. Definitions for each of the quality factors and
metrics used in QMOOD model are provided in Table I.

The data at our disposal to run our tests is from 31
software packages and 2330 samples. The rating options
are bad, poor, good, fair, and excellent. Each package was
rated individually by a group of experts for each of the
metrics and for the total quality. Note that the data is
the same data set as used in [15], in which the authors
proposed a machine learning techniques to predict SQA.

Using the above-described data, our goal is to show that:
(1) our approach allows to accurately recreate decisions
(data) used to determine the reasoning process (fuzzy
measure); and that (2) it also works to predict decisions
(data) that were not included in determining the reasoning
process (fuzzy measure) but that were available to us.

We were also interested in addressing the following
questions:

1) Are experts consistent when they assess software?
Focusing on one expert at a time, we wanted to
know how well we would be able to reconstruct each
expert’s decision-making process. Again, this was
highly dependent on each expert’s original ability to
make consistent decisions.

2) Do experts agree on software assessment? or are we
able to create a “super expert”’s decision process
using our approach? Looking at one software pack-
age at a time, across experts, we wanted to get a
sense of common decision-making process among the
experts. We wanted to see how closely we would
be able to reconstruct the decisions, which is very
tightly coupled with a sense of agreement across the
experts.

B. Experimental Results
1) Reconstructing the data: Using all data and all ex-

perts. The 2330 samples we have at our disposal include
31 software packages and are evaluated by 78 experts. We
first extracted a fuzzy measure from all samples that fits
them all the best. In Table II, we report the accuracy
reached when determining the target fuzzy measure; i.e.,



the sum of the differences between the reconstructed data
and the original data for all the data.In particular, we
provide this information for different iteration counts of
our Bees algorithm: we can observe that the quality is
stabilized already after 100 iterations.

TABLE II
Optimal fuzzy measure for all samples

Iterations e

100 0.07675
1000 0.07671
10000 0.07670

Although the results are stable after 100 iterations,
it is about 10 times worse than the results of the toy
examples in [26]. This is because 78 experts were involved
the SQA evaluation and the decisions are not consistent
among different experts. Even for the same expert, the
decisions may not be consistent. This is the object of our
next experiments.

Focusing on one expert at a time. We ran experiments
to see whether experts were consistent in their decision
process; that is, for different software packages, whether
the values of the metrics are similar, then each expert’s
decision of the quality should be very close. Table III shows
the results for each expert.

TABLE III
Testing results for each expert

e # of experts

< 0.01 25
[0.01, 0.035) 25
[0.035, 0.075) 16
≥ 0.075 12
min 1.68E-05
max 0.4398

We find that most individual expert’s decision processes
(64%) are consistent, while some experts’ decision shows
big discrepancies from one sample or package assessment
to another.

For example, one expert evaluated 5 samples for 1
software package, and the result is 0.4398. We check the
sample data and find no matter how difference the value
of the metrics are, the expert always makes the same
decision, which means the expert’s opinion on the SQA is
not consistent.

Focusing on one software package at a time. We
tested to see whether the evaluation from different experts
for the same software package is consistent, that is, for
the same software package, since evaluated by different
experts, the discrepancy of the experts’ decision should
be larger than the previous results. Figure 1 shows the
results for each software package.

Fig. 1. Evaluation Results for each Software package

Since each software package was evaluated by at least 6
experts, and each expert has a different point of view for
each Software package, it is reasonable that the results for
each Software package is worse (less consistent) that the
results for each expert.
2) Predicting the data: As mentioned earlier, the goal of

this research is to test how well fuzzy measure extraction
can help predict software quality. We test it by first
extracting fuzzy measure from part of the sample data
(randomly selected) and then using the extracted fuzzy
measure to predict the software quality for the rest samples
to see if the predicted software quality matches the original
software quality. Testing results are in table IV.

TABLE IV
Testing results for randomly selected partial samples

(Iteration = 1000)

Sample numbers e

500 0.07904
1000 0.07862
2330 0.07671

C. Analysis of our results
What we have shown in above is how well the Bees

algorithm used to extract fuzzy measure. Now we want to
test how well the extracted fuzzy measure can help predict
Software quality.

We compared the evaluations we obtained to the orig-
inal experts’ decision and assessed the accuracy of our
approach using 3 different evaluation processes.

1) Eval1: We computed the average assessment over the
known experts’ decisions and considered this average
the target evaluation. Anything else would just be
considered wrong.

2) Eval2: We used the same average as before but al-
lowed for some flexibility by accepting any evaluation
within σ (standard deviation) of the target average.
This evaluation accounted for the uncertainty of the
experts’ decisions.

3) Eval3: We mapped the number of experts decisions
from 0% to 100% based on the maximum number
of votes for one rating (which would be the one to



receive 100% accuracy) and interpolated all other
possible ratings (numerical values in between posted
ratings) to determine their accuracy.

The overall evaluation results for all quality factors are
in table V, and we also list the results using machine
learning approach to compare with.

TABLE V
Accuracy using Hybrid2

Quality Factor Machine learning Eval 1 Eval 2 Eval 3
approach [15] (Average) (µ± σ)

Reusability 69.91% 41.67% 79.55% 72.34%
Flexibility 75.39% 47.89% 75.71% 66.34%
Extendibility 70.37% 42.80% 77.43% 70.91%
Functionality 78.54% 27.39% 42.74% 59.50%

VI. Conclusion and Future Work
In this article, we proposed an multi-criteria decision-

making-based approach to software quality assessment.
By viewing this assessment problem as a multi-criteria
decision making (MCDM) problem, we were able to use
fuzzy measures to model software expert’s decision making
process and help predict/evaluate software quality. We
were able to show that our approach (specifically fuzzy
measure extraction based on experts’ decisions data) helps
to predict/evaluate software quality with consistently over
60% accuracy, which is as accurate as previous approaches
to SQA conducted using machine learning techniques.

Our current approach can be further improved as fol-
lows. Although the Bees algorithm we implemented pro-
vides good and reasonably fast results for fuzzy measure
extraction, we believe we can improve it by combining
it with another solver. Moreover, the expert’s opinions
(data used to extract a decision process model) usually
are linguistic values; for example, Excellent, Good, Fair,
Poor, and Bad. These words have different meanings to
different experts, and therefore, expert’s linguistic ratings
are uncertain and their interpretation should not be uni-
form. In particular, using a continuous utility function
that assigns a precise value to each of these evaluation
results would result in losing accuracy. In order to better
fit the expert’s onions, in the future, we will use an
interval end-points approach [11] and may use non-linear
utility functions. Finally, we need to study the amount of
data that is necessary to extract meaningful and accurate
decision process models: for instance, what is the impact of
a reduced sample data set on the quality of the decisions?
What is the critical number of data w.r.t. the number of
criteria for instance?

References
[1] S. H. Alavi, J. Jassbi, P. J. A. Serra, and R. A. Ribeiro. Defining

fuzzy measures: A comparative study with genetic and gradient
descent algorithms. In Intelligent Engineering Systems and
Computational Cybernetics, pages 427–437. Springer Nether-
lands, 2009.

[2] J. Bansiya and C. Davis. A hierarchical model for object-
oriented design quality assessment. IEEE Transactions on
Software Engineering.

[3] M. Ceberio and F. Modave. An interval-valued, 2-additive cho-
quet integral for multi-criteria decision making. In Proceedings
of the 10th Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (IPMU’04),
Perugia, Italy, July 2004.

[4] E. F. Combarro and P. Miranda. Identification of fuzzy mea-
sures from sample data with genetic algorithms. Computers &
Operations Research, 33(10):3046–3066, 2006.

[5] L. Davis. Genetic Algorithms and Simulated Annealing. Morgan
Kaufmann Publishers Inc., San Francisco, CA, 1987.

[6] Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic
optimization algorithm: harmony search. Simulation, 76(2):60–
68, 2001.

[7] M. Grabisch. A new algorithm for identifying fuzzy measures
and its application to pattern recognition. In Proceedings of 4th
IEEE International Conference on Fuzzy Systems, Yokohama,
Japan, March 1995.

[8] M. Grabisch. The application of fuzzy integrals in multicriteria
decision making. European Journal Of Operational Research,
89(3):445–456, 1996.

[9] M. Grabisch, H.T. Nguyen, and E. A. Walker. Fundamentals of
uncertainty calculi with applications to fuzzy inference. Kluwer
Academic Publishers, Norwell, MA, 1994.

[10] M. Lorenz and J. Kidd. Object-oriented software metrics: a
practical guide. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1994.

[11] J. Mendel. Computing with words and its relationships with
fuzzistics. Information Sciences, 177:988–1006, 2007.

[12] T. M. Mitchell. Machine Learning. McGraw-Hill, New York,
first edition, 1997.

[13] F. Modave, M. Ceberio, and V. Kreinovich. Choquet integrals
and owa criteria as a natural (and optimal) next step after
linear aggregation: A new general justification. In Proceedings
of MICAI’2008, pages 741–753, 2008.

[14] F. Modave and P. W. Eklund. A measurement theory perspec-
tive for mcdm. In Proceedings of the 10th IEEE International
Conference on Fuzzy Systems, pages 1068–1071, Melbourne,
Australia, 2001.

[15] J. Osbeck, S. Virani, O. Fuentes, and P. Roden. Investigation
of automatic prediction of software quality. In North American
Fuzzy Information Processing Society (NAFIPS’2011), El Paso,
TX, March 2011.

[16] Pfleeger. Software Engineering Theory and Practice. Prentice
Hall, 2001.

[17] D. Pham, A. Ghanbarzadeha, E. Koc, S.Otri, S. Rahim, and
M. Zaidi. The bees algorithm-a novel tool for complex opti-
mization problems. In Proceedings of 2nd International Virtual
Conference on Intelligent Production Machines and Systems
(IPROMS 2006), pages 454–459, 2006.

[18] R. Poli, J. Kennedy, and T. Blackwell. Particle swam optimiza-
tion. Swarm Intelligence, 1(1):33–57, 2007.

[19] R. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 2005.

[20] I. Sommerville. Software Engineering. Addison Wesley Publish-
ing Company, Harlow, England, 2004.

[21] E. Takahagi. Usage: Fuzzy measure-choquet integral calculation
system (λ fuzzy measure and sensitivity analysis). http://www.
isc.senshu-u.ac.jp/~thc0456/Efuzzyweb/mant2/mant2.html.

[22] E. Takahagi. A fuzzy measure identification method by diamond
pairwise comparisons and φs transformation. Fuzzy Optimiza-
tion and Decision Making, 7(3):219–232, 2008.

[23] S. S. Virani, S. Messimer, P. Roden, and L. Etzkorn. Software
quality management tool for engineering managers. In Proceed-
ings of the Industrial Engineering Research Conference, pages
1401–1406, Vancouver, Canada, 2008.

[24] J. Wang and Z. Wang. Using neural networks to determine
sugeno measures by statistics. Neural Networks, 10(1):183–195,
1997.

[25] X. Wang, J. Cummins, and M. Ceberio. The bees algorithm
to extract fuzzy measures for sample data. In North American
Fuzzy Information Processing Society (NAFIPS’2011), El Paso,
TX, March 2011.



[26] Z. Wang, K. Leung, and J. Wang. A genetic algorithm for
determing nonadditive set functions in information fusion. Fuzzy

Sets and Systems - Special issue on fuzzy measures and integrals,
102(3):463–469, 1999.



Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


