
Interval-based Algorithms to Extract Fuzzy
Measures for Software Quality Assessment

Xiaojing Wang∗, Angel F. Garcia Contreras†, Martine Ceberio‡,
Christian Del Hoyo§, and Luis C. Gutierrez¶, Shamsnaz Virani‖

Computer Science Department
The University of Texas at El Paso

El Paso, Texas 79968-0518
∗ xwang@utep.edu, † afgarciacontreras@miners.utep.edu, ‡ mceberio@utep.edu,
§ cdelhoyo@miners.utep.edu, ¶ lcgutierrez@miners.utep.edu, and ‖ ssv1@psu.edu

Abstract—In this paper, we consider the problem of automati-
cally assessing sofware quality. We show that we can look at this
problem, called Software Quality Assessment (SQA), as a mul-
ticriteria decision-making problem. Indeed, just like software is
assessed along different criteria, Multi-Criteria Decision Making
(MCDM) is about decisions that are based on several criteria
that are usually conflicting and non-homogenously satisfied. Non-
additive (fuzzy) measures along with the Choquet integral can
be used to model and aggregate the levels of satisfaction of these
criteria by considering their relationships. However, in practice,
fuzzy measures are difficult to identify. An automated process
is necessary and possible when sample data is available. Several
optimization approaches have been proposed to extract fuzzy
measures from sample data; e.g., genetic algorithms, gradient
descent algorithms, and the Bees algorithm, all local search
techniques. In this article, we propose a hybrid approach,
combining the Bees algorithm and an interval constraint solver,
resulting in a focused search expected to be less prone to falling
into local results. Our approach, when tested on SQA decision
data, shows promise and compares well to previous approaches
to SQA that were using machine learning techniques.

I. INTRODUCTION

Software product quality is crucial as software is present
in every aspect of normal day-to-day life. Software problems
such as server breakdowns, software crashes, and data leaks
have become common occurrences.

Software quality assessment (SQA) is categorized in three
ways [15]:

1) The quality of product;
2) The quality of process; and
3) The quality in the context of the business environment.
Software quality assessment (SQA) can be seen as a Multi-

Criteria Decision-Making (MCDM) problem, that is, the gen-
eral quality assessment (i.e., final decision of software) is
based on a set of metrics (i.e., multiple criteria). This kind
of complex decision process is called Multi-Criteria Decision
Making (MCDM).

In general, when a decision is not critical, we mentally
“average/sort” criteria along with their satisfaction levels.
Usually, the satisfaction level of each criterion is subject to
the decision maker’s personal preference. The overall score of
an alternative is then calculated by aggregating the values of
satisfaction with weights on each criterion, where the weight

indicates how importance each criterion is over the entire set
of criteria. This approach is called a weighted sum approach,
and the weight assigned to different sets of criteria in this
approach forms an “additive measure”. However, such additive
aggregation assumes that criteria are independent, which is
seldom the case [3]. Non-linear approaches also prove to lead
to solutions that are not completely relevant [12]. This is why
we then turn to non-additive (fuzzy) measures.

For example, if two criteria are strongly dependent, it means
that both criteria express, in effect, the same attribute. As
a result, when considering the set consisting of these two
criteria, we should assign to this set the same weight as to
each of these criteria and not double the weight as we would
in a weighted sum approach. In general, weights associated
to different sets should differ from the sum of the weights
associated to individual criteria. In mathematics, such non-
additive functions assigning numbers to sets are known as
non-additive (fuzzy) measures. It is therefore reasonable to
describe the dependence between different criteria by using
an appropriate non-additive (fuzzy) measure.

However, to make this happen, fuzzy measures need to
be determined: they can either be identified by a decision
maker/expert or by an automated system that extracts them
from sample data. Since human expertise might not always
be available and getting accurate fuzzy values (even from an
expert) might be tedious [10], we focus here on extracting
fuzzy measures from sample data.

The sample data that we use is a set of overall preference
values (i.e., preferences that would otherwise be obtained
after combining criteria satisfaction levels and an appropriate
fuzzy measure through Choquet integral) associated with given
inputs (i.e., items that we need to decide on, such as cars).
The SQA data we used in this work are based on direct
measurements of code properties that follow QMOOD set of
metrics [2].

Fuzzy measure extraction seeks to determine the fuzzy mea-
sure that, when combined in a Choquet integral, returns a value
that best models the expert’s decision, i.e., the corresponding
sample data value from expert. This problem is therefore
tackled as an optimization problem. Several optimization
approaches have been used to extract fuzzy measures from

978-1-4673-2338-3/12/$31.00 ©2012 IEEE

sample data, such as gradient descent algorithms [6], genetic
algorithms [4], [24], [26], and the Bees algorithm [25]. More
specifically, fuzzy measure extraction constitutes a constrained
optimization problem since the optimal solution must also
satisfy the monotonicity constraints inherent to the fuzzy
measure we aim at determining.

In this article, we propose to use an adaptive hybrid al-
gorithm that combines the Bees algorithm and an interval
constraint solver to identify fuzzy measures from sample
data. The Bees algorithm has been successfully used in many
optimization problems but requires a significant amount of
tuning to attain reasonable performance. We adjusted it to
the needs of fuzzy measure extraction problems: in [25],
we showed that using the Bees algorithm to extract fuzzy
measures from sample data provides better performance with
results of similar or better accuracy than existing approaches.
In this article, we use an interval constraint solver to shrink the
search space to focus the Bees search to improve the overall
performance and provide a certificate that we explore the right
parts of the search space.

The article is organized as follows: Section II provides
background and recalls necessary definitions on SQA, MCDM,
fuzzy measures, fuzzy integrals, and fuzzy measure extrac-
tions. Section III introduces Fuzzy Measure Extraction (FME)
as an optimization problem and recalls existing approaches to
FME. We present our approach in Section IV, describe our
experimental strategy, report, and analyze the results in Sec-
tion V. Finally, we draw conclusions and propose directions
for future work in Section VI.

II. BACKGROUND

A. Software quality assessment

Software quality is defined as “Conformance to explicitly
stated functional and performance requirements, explicitly
documented development standards and implicit characteris-
tics that are expected of all professionally developed soft-
ware” [17]. This definition addresses two aspects of software
quality. The first is conformance to explicitly stated functional
and performance requirements and explicitly documented de-
velopment standards. These can be found in the requirements
document developed between the customer and client. This
kind of software quality is to some extent measurable [18]. The
second aspect of software quality addressed in this definition
is the implicit characteristics of all professionally developed
software. These are characteristics such as reusability or
flexibility. These implicit characteristics are also known as
quality factors. The implicit aspect of software quality is solely
based on expert opinion which is frequently inconsistent and
subjective [18]. There is a need to directly measure the implicit
aspect of software quality.

There are two main type of software quality models: theoret-
ical models and predictive models. Theoretical models define
several quality factors such as reusability and flexibility but
do not quantify them. Predictive models are models based
on statistical techniques that predict characteristics such as
fault density or fault proneness using direct measurements

from code (product metrics). Predictive models predict the
faults but have no theoretical evidence to support causality.
One solution to remedy this problem is to add prediction
capability to a theoretical model. Quality factors defined in
a theoretical model are not measurable and hence cannot be
predicted. One of the theoretical software quality models that
defined the quality factors and linked all of them to measurable
metrics in object-oriented software was proposed by Bansiya
and Davis [2], and this model defines six quality factors and
linked them to QMOOD set of metrics defined in Table I.

Although the Bansiya and Davis’s model provides a solid
explanation for the design quality of object-oriented design,
it presents some limitations. The major problems with the
Bansiya and Davis model are their validation process, data
used in the research and lack of prediction capability [5].

Machine learning is an important aspect in predicting soft-
ware product quality because the more a classifier can learn,
the better decisions it will make in building a predictive
model [11]. Osbeck et al improved the prediction capabil-
ity using J48, Part, and Random Forest, and the ensemble
learning techniques examined were boosting, bagging, and
stacking [14].

In our work, we show that SQA can be seen as a MCDM
problem, and software product quality can be predicted by
using fuzzy measures and Choquet integral.

B. Multicriteria Decision Making

Multicriteria decision making (MCDM) is the making of
decisions based on multiple criteria (or attributes). In general,
it consists of:

• X is the set of consequences;
• A = {1, · · · , n} is the (finite) set of n criteria (or

attributes); and
• � is a preference relation on the set of consequences.

The set of consequences X is a multidimensional space, where
X ⊆ X1×· · ·×Xn, and each Xi represents a set of values of
criterion i, where i ∈ A. For each i ∈ A, there is a preference
relation �i on each space Xi, such that for xi, yi ∈ Xi, xi �i

yi means that xi is preferred to yi. And there is a global
preference relation � on X .

Note: The reason why X can be a proper subset of X1 ×
· · ·×Xn is because not all combinations of all criteria values
necessarily exist: each n-tuple of X1 × · · · × Xn represents
a possible instance / an alternative to pick from, all of which
are not necessarily possible. For instance, consider the case of
cars: one criterion being the price, another being the year of
make. It is unlikely that the lowest value of the price criterion
can match any high value of the year of make; i.e., there is
likely no recent car that is very cheap.
Then an aggregation operator that “combines” the monodi-
mensional preferences needs to be used to represent the global
preference, i.e., a preference over the set of consequences X:
∀x, y ∈ X , x � y or y � x.

TABLE I
QMOOD MODEL [2]

Quality Factor Definition Bansiya and Davis’s Model Metric Definition (QMOOD metric)
Reusability
Reflects the presence of object oriented
design characteristics that allow a design
to be reapplied to a new problem without
significant effort.

-0.25 * Coupling + 0.25 * Cohe-
sion + 0.5*Messaging +0.5* De-
sign Size

Design Size (DSC)
A measure of number of classes used in the design.
Hierarchies (NOH)
Hierarchies are used to represent different generalization-
specialization aspects of the design.
Abstraction (ANA)
A measure of generalization-specialization aspect of design.
Encapsulation (DAM)
Defined as the enclosing of data and behavior within a single
construct.
Coupling (DCC)
Defines the inter dependency of an object on other objects in
a design.
Cohesion (CAM)
Accesses the relatedness of methods and attributes in a class.
Composition (MOA)
Measures the “part-of”, “has”, “consists-of”, or “part-whole”
relationships, which are aggregation relationships in object
oriented design.
Inheritance (MFA)
A measure of the “is-a” relationship between classes.
Polymorphism (NOP)
It is a measure of services that are dynamically determined
at run-time in an object.
Messaging (CIS)
A count of number of public methods those are available as
services to other classes.
Complexity (NOM)
A measure of the degree of difficulty in understanding and
comprehening the internal and external structure of classes
and their relationships.

Flexibility
Characteristics that allow the incorporation
of changes in a design. The ability
of a design to be adapted to provide
functionality related capabilities.

0.25 * Encapsulation - 0.25 * Cou-
pling + 0.5 * Composition + 0.5 *
Polymorphism

Understandability
The properties of designs that enable it to
be easily learned and comprehended. This
directly relates to the complexity of design
structure.

-0.33 * Abstraction + 0.33 * En-
capsulation - 0.33 * Coupling +
0.33 * Cohesion -0.33 * Polymor-
phism - 0.33 * Complexity - 0.33
* Design Size

Functionality
The responsibility assigned to the classes
of a design, which are made available by
classes through their public interfaces.

0.12 * Cohesion + 0.22 * Polymor-
phism + 0.22 * Messaging + 0.22
* Design Size + 0.22 * Hierarchies

Extendibility
Refers to their presence and usage of
properties in an existing design that allow
for the incorporation of new requirements
in the design.

0.5 * Abstraction - 0.5 * Coupling
+ 0.5 * Inheritance +0.5 * Poly-
morphism

Effectiveness
This refers to the designs ability to achieve
the desired functionality and behavior
using object oriented design concepts and
techniques.

0.2 * Abstraction + 0.2 * Encapsu-
lation + 0.2*Composition + 0.2 *
Inheritance + 0.2 * Polymorphism

As mentioned in introduction, the common aggregation oper-
ator being used is a weighted sum; i.e.,

u(x) =
n∑

i=1

wiui(xi),

where wi is the weight of each criterion, representing the
importance of each criterion,

∑n
i=1 wi = 1, and ui represents

the level of “satisfaction” of criterion i. The best alternative is
the one with the highest value of u. However simple, easy, and
low-complexity this approach is, using an additive aggregation
operator assumes that all the criteria are independent, which
is seldom the case: often, decisions are based on several
conflicting criteria and using linear additive aggregation will
lead to possibly very counterintuitive decisions. Non-linear ap-
proaches also prove to lead to solutions that are not completely
relevant. Based on our previous work [12], we choose to use
non-additive approaches, i.e., fuzzy measures and integrals [3].

C. Fuzzy measures and integrals

Fuzzy measures are non-additive measures. They can be
used to represent the degree of interaction of each subset of
criteria [4].

Definition 1. Let A be a finite set and P(A) the power set
of A. A fuzzy measure (or a non-additive measure) defined on

A is a set function µ : P(A)→ [0, 1] satisfying the following
conditions:
(1) µ(∅) = 0
(2) µ(A) = 1
(3) if X , Y ⊆ A and X ⊆ Y , then µ(X) ≤ µ(Y)

Once a fuzzy measure is identified, two main integrals can be
used as “aggregation” operators: the Sugeno and the Choquet
integrals. Although structurally similar, they are different in
nature [7]: the Sugeno integral is based on non-linear operators
and the Choquet integral is usually based on linear operators.
The applications of Sugeno and Choquet integrals are also
very different [13]: the Choquet integral is generally used
in quantitative measurements, and a MCDM problem usually
uses a Choquet integral as a representation function. In this
article, we focus on the Choquet integral.

Definition 2. Let µ be a fuzzy measure on A. The Choquet
integral of a function f : A→ R with respect to µ is defined
by:

(C)

∫
A

fdµ =
n∑

i=1

(f(σ(i))− f(σ(i− 1)))µ(A(i))

where σ is a permutation of the indices in order to have
f(σ(1)) ≤ · · · ≤ f(σ(n)), A(i) = {σ(i), . . . , σ(n)} and
f(σ(0)) = 0, by convention.

Fuzzy measures are expensive to determine: for a set defined
over n criteria, 2n values of a fuzzy measure are needed
because there are 2n subsets of A.

D. Determining Fuzzy Measures

Although we would expect decision makers to be likely to
provide the values of the fuzzy measure, in most circumstances
this is not the case. Attempts at making fuzzy measure
identification easier for the decision makers have been made
in [3], [20], [21].

• In [3], the authors attempt to make this task easier by
only requiring the decision maker to give an interval of
importance for each interaction.

• In [21], the author suggests a diamond pair-wise com-
parison, where the decision maker only must identify the
interaction of 2 criteria using a labeled diamond. From
there, the algorithm evaluates the values of the numeric
weights.

• In [20], the author discusses user specified weights mixed
with an interaction index denoted λ or ξ. This algorithm
is applied using an online aggregation application [19].

However, in most cases, the decision maker does not un-
derstand the interactions well enough to be able to provide
relevant values of the fuzzy measure. This is where fuzzy
measure extraction comes into play.

III. FUZZY MEASURE EXTRACTION (FME) AND
OPTIMIZATION

A. Relation Between our Problem and Optimization

For lack of an expert to provide all values of the fuzzy mea-
sure, we need seed data to give us an idea of the preferences
/ expert’s opinions: we use sample data. Our objective is to
determine a fuzzy measure that returns the closest values to
our seed data (the expert’s known decisions).

Let us take a look at the following situation:
Our MCDM problem involves n criteria, and we have m
sample data. It means that we have access to the following: m
expert’s decision values ỹj , j ∈ {1, · · · ,m}, corresponding to
m alternative items (in our case, software pieces). As a result,
if we computed the perfect corresponding fuzzy measure,
denoted by µ̃, we would have, ∀j ∈ {1, ...,m}:

ỹj = (C)

∫
A

fdµ̃ =
n∑

i=1

(f(σ(i))− f(σ(i− 1)))µ̃(A(i))

where f is a utility function defined on X .
In practice however, for lack of consistency in sample

decision data, we “only” aim at getting as close to seed data
as possible. As a result, we aim at minimizing the following
sum (and getting the “error” e as close to 0 as possible) [8]:

e =
m∑
j=0

(
ỹj −

n∑
i=1

(f(σ(i))− f(σ(i− 1)))µ(A(i))

)2

(1)

In addition to minimizing e, constraints need to be satisfied,
which ensure that we obtain a fuzzy measure. Fuzzy measures

must be monotonic (1) and their values must be between 0
and 1 (2). (1) defines the constraints of the FME problem; (2)
defines the search space. For a problem with n criteria, the
number of monotonicity constraints is

∑n−2
k=1

(
n
k

)
∗ (n−2). As

a result, extracting a fuzzy measure is cast down to solving a
constrained optimization problem. When e = 0, the identified
fuzzy measure µ is the exact solution of the problem: this is
the ideal case. In most cases, the sample data might not be
fully consistent with one fuzzy measure, i.e., human decisions
are not always consistent, and we “only” reach an approximate
optimal solution, that is, with e 6= 0 but close to 0.

B. Optimization Techniques used for FME

Several optimization approaches have been proposed to ex-
tract fuzzy measures. We briefly go over the main approaches
in what follows:

Genetic algorithms have been successfully used to solve a
number of optimization problems, including fuzzy measure
extraction in [4], [24], and [26]. Although they show promise
for extracting fuzzy measures, they might fall into a local
optimum. While mutations are part of genetic algorithms to try
to avoid falling in local minima, they do not totally prevent it
(especially if there are local optima that are in distant locations
but have values close to the global optimum).

Gradient descent algorithms were also proposed for FME,
see [6], taking advantage of the lattice structure of the co-
efficients of the fuzzy measure. Such approach can quickly
and accurately reach a local optimum if the initial values are
properly selected. However, the monotonicity constraints need
to be checked at every iteration. This algorithm was improved
on in [1] and the experiments conducted at that time showed
that a gradient descent approach could easily overperform a
genetic algorithm approach.

A neural network approach for FME was proposed in [23]:
the calculation of the Choquet integral was described by a
neural network. However, such search easily falls in a local
minimum.

The Bees algorithm, proposed in [16], was also used for
FME in [25]. It uses bees’ natural food foraging habits as
a model for the exploration of the search space. The Bees
algorithm combines a local and “global” search that are both
based on bees natural foraging habits. Although this algorithm
provided good results for FME, there was still not enough
evidence to prove that the algorithm does not fall into a local
optimum.

IV. IDENTIFYING FUZZY MEASURES USING
INTERVAL-BASED ALGORITHMS

Although previous attempts have been shown to extract
fuzzy measures successfully from sample data, they have lim-
itations. In particular, the returned solution (found minimum
of the objective function) might just be a local minimum, or
even worse, a good value. Moreover, uncertainty might be part
of the model to solve. It is reasonable for experts to provide
data in ranges instead of precise values. Using intervals allows
to take this kind of uncertainty into account. Furthermore,

when dealing with problems defined on real numbers, the
actual computations will round each real number to the most
“relevant” floating-point number. Rounding errors can lead the
returned result to be dramatically different from the original
expected solution.

The work presented in this article addresses the above-
mentioned issues: it focuses the search on relevant areas of the
search space by pruning areas that do not match the currently
found optimum, it can process interval data, and will not
be prone to rounding errors. We propose an adaptive hybrid
interval-based approach that combines the Bees algorithm
(a global local search algorithm) with an interval constraint
solver.

We use RealPaver [9], a complete, interval-based, contin-
uous constraint solver. In the context of our hybrid solver,
RealPaver is used to reliably discard parts of the search
space that do not contain solutions, in order to help the Bees
algorithm focus its search on feasible regions, see Figure 1.

Fig. 1. Using RealPaver to shrink the search space

V. EXPERIMENTS AND RESULTS

A. Testing Methodology

We aim at assessing the performance of our approach in
automatically predicting software quality. The metrics we use
are the Quality Model for Object-Oriented Design (QMOOD)
metrics, as defined in [2] and used by Virani et al [22]. We
focus on the metrics and the quality factors related to QMOOD
model, as in [2], as defined in Table I.

The data at our disposal to run our tests comes from 31
software packages and is composed of 2330 samples. The
rating options are bad, poor, good, fair, and excellent. Each
package was rated individually by a group of experts for each
of the metrics criteria and for the total quality. Note that the
data is the same data set as used in [14], in which the authors
proposed a machine learning techniques to predict SQA.

Using the above-described data, our goal is to show that:
(1) our approach allows to accurately recreate decisions (data)
used to determine the reasoning process (fuzzy measure); and
that (2) it also works to predict decisions (data) that were not
included in determining the reasoning process (fuzzy measure)
but that were available to us.

B. Experimental Results

When using our hybrid algorithm, we considered 2 config-
urations:

• Hybrid1 – Both RealPaver and the Bees algorithm are
called only once. RealPaver is called in the beginning to

shrink the search space first, then the Bees algorithm only
is run.

• Hybrid2 – Both RealPaver and the Bees algorithm are
called multiple times. The Bees algorithm is called after
each run of RealPaver until a given accuracy is reached.

Each configuration is run 10 times on each sample decision
data, and we calculate the average as the final results. To be
able to compare against the performance of the Bees algorithm,
each Bees algorithm in Hybrid1 and Hybrid2 is run 1000
times, and the overall number of iterations in Hybrid2 is 5000.

Values of e, as defined in Section III, are reported in
Table II. We can observe that Hybrid2 is slightly more efficient
than Hybrid1. Overall, Hybrid2 is as efficient as Bees alone,
which indicates that, in general, the Bees algorithm does not
fall into a local minimum: the advantage of Hybrid2 over Bees
is that Hybrid2 will guarantee the global search, as opposed to
the Bees, which will not come with any guarantee. In addition,
let us note that, within 1000 iterations, the Bees algorithm
could not find the optimal fuzzy measures for Effectiveness
and Understandability that satisfied all constraints.

TABLE II
COMPARISON WITH THE OTHER ALGORITHMS

Quality Bees Hybrid1 Hybrid2
Factor Algorithm

Reusability 0.076735 0.076753 0.076725
Flexibility 0.098318 0.099890 0.098316
Extendibility 0.104124 0.104836 0.104063
Functionality 0.072958 0.073175 0.072967

C. Discussion of quality assessment

We then used the obtained fuzzy measures to recreate the
experts’ decision (our seed data). We compared the evaluations
we obtained to the original experts’ decision and assessed
the accuracy of our approach using 3 different evaluation
processes.

1) Eval1: We computed the average assessment over the
known experts’ decisions and considered this average the
target evaluation. Anything else would just be considered
wrong.

2) Eval2: We used the same average as before but al-
lowed for some flexibility by accepting any evaluation
within σ (standard deviation) of the target average. This
evaluation accounted for the uncertainty of the experts’
decisions.

3) Eval3: We mapped the number of experts decisions from
0% to 100% based on the maximum number of votes
for one rating (which would be the one to receive 100%
accuracy) and interpolated all other possible ratings (nu-
merical values in between posted ratings) to determine
their accuracy.

The overall evaluation results for all quality factors are
in table III, we also list the results using machine learning
approach to compare with.

The accuracy using Eval1 is low. With the same group of
inputs, the experts’ decisions are different; sometimes, they
may even draw exactly opposite decisions. As a result, the
reported accuracy of our approach using this evaluation may
be affected. We observe, in particular, that when allowing
some uncertainty (Eval2, also seen as flexibility), the reported
accuracy of our approach significantly improved.

We then consider the distribution of all decisions and
evaluate if the measured quality matches the majority decisions
(Eval3). Although the accuracy reported when using Eval3
does not match that of Eval2, it still comes close to that
obtained through machine learning and we believe that Eval3
is more relevant to group decision than the other two.

TABLE III
ACCURACY USING HYBRID2

Quality Factor Machine learning Eval 1 Eval 2 Eval 3
approach [14] (Average) (µ± σ)

Reusability 69.91% 42.05% 79.17% 72.12%

Flexibility 75.39% 47.13% 74.71% 66.62%

Extendibility 70.37% 42.80% 77.04% 71.02%

Functionality 78.54% 33.61% 57.68% 64.02%

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed a hybrid interval-based algo-
rithm that combines Bees with an interval constraint solver
that narrows down the search space to focus on areas that
are likely to contain better values of the objective function.
We tested our approach in the context of software quality
assessment and compared our results with those of previous
work using machine learning. We observed that our approach
yielded similar results overall, depending on the evaluation
rules.

We need to explore further the definition of a more
relevant evaluation process and conduct more comparisons
with the machine learning approach. We might consider
combining them. We also plan to use our FME approach
to help model non-expert decision-making process, helping
understand which information factors contribute to changing
decisions’ outcomes.

ACKNOWLEDGMENT

The work presented here was partially supported by NSF
grant CCF No. 0953339.

REFERENCES

[1] S. H. Alavi, J. Jassbi, P. J. A. Serra, and R. A. Ribeiro. Defining
fuzzy measures: A comparative study with genetic and gradient descent
algorithms. In Intelligent Engineering Systems and Computational
Cybernetics, pages 427–437. Springer Netherlands, 2009.

[2] J. Bansiya and C. Davis. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on Software Engineering,
28(1):4–17, 2002.

[3] M. Ceberio and F. Modave. An interval-valued, 2-additive Choquet
integral for multi-criteria decision making. In Proceedings of the 10th
Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU’04), Perugia, Italy, July 2004.

[4] E. F. Combarro and P. Miranda. Identification of fuzzy measures from
sample data with genetic algorithms. Computers & Operations Research,
33(10):3046–3066, 2006.

[5] Moody D. L. Theoretical and practical issues in evaluating the quality
of conceptual models: current state and future directions. Data &
Knowledge Engineering, 55(3):243–276, 2005.

[6] M. Grabisch. A new algorithm for identifying fuzzy measures and
its application to pattern recognition. In Proceedings of 4th IEEE
International Conference on Fuzzy Systems, volume 1, pages 145–150,
Yokohama, Japan, March 1995.

[7] M. Grabisch. The application of fuzzy integrals in multicriteria decision
making. European Journal Of Operational Research, 89(3):445–456,
1996.

[8] M. Grabisch, H.T. Nguyen, and E. A. Walker. Fundamentals of uncer-
tainty calculi with applications to fuzzy inference. Kluwer Academic
Publishers, Norwell, MA, 1994.

[9] L. Granvilliers and F. Benhamou. Realpaver: An interval solver using
constraint satisfaction techniques. ACM Transactions on Mathematical
Software (TOMS), 32(1):138–156, 2006.

[10] T. Magoč and V. Kreinovich. How to relate fuzzy and owa estimates. In
Proceedings of North American Fuzzy Information Processing Society
(NAFIPS’2010), Toronto, Canada, July 2010.

[11] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, first
edition, 1997.

[12] F. Modave, M. Ceberio, and V. Kreinovich. Choquet integrals and owa
criteria as a natural (and optimal) next step after linear aggregation: A
new general justification. In Proceedings of MICAI’2008, pages 741–
753, 2008.

[13] F. Modave and P. W. Eklund. A measurement theory perspective for
mcdm. In Proceedings of the 10th IEEE International Conference on
Fuzzy Systems, pages 1068–1071, Melbourne, Australia, 2001.

[14] J. Osbeck, S. Virani, O. Fuentes, and P. Roden. Investigation of
automatic prediction of software quality. In Proceedings of North
American Fuzzy Information Processing Society (NAFIPS’2011), El
Paso, TX, March 2011.

[15] S. L. Pfleeger. Software Engineering Theory and Practice. Prentice
Hall, 2001.

[16] D. Pham, A. Ghanbarzadeha, E. Koc, S.Otri, S. Rahim, and M. Zaidi.
The bees algorithm-a novel tool for complex optimization problems.
In Proceedings of 2nd International Virtual Conference on Intelligent
Production Machines and Systems (IPROMS 2006), pages 454–459,
2006.

[17] R. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 2005.

[18] I. Sommerville. Software Engineering. Addison Wesley Publishing
Company, Harlow, England, 2004.

[19] E. Takahagi. Usage: Fuzzy measure-Choquet integral calculation system
(λ fuzzy measure and sensitivity analysis). http://www.isc.senshu-u.ac.
jp/∼thc0456/Efuzzyweb/mant2/mant2.html.

[20] E. Takahagi. On identification methods of λ -fuzzy measures using
weights and λ. Japanese Journal of Fuzzy Sets and Systems, 12(5):665–
676, 2000.

[21] E. Takahagi. A fuzzy measure identification method by diamond
pairwise comparisons and φs transformation. Fuzzy Optimization and
Decision Making, 7(3):219–232, 2008.

[22] S. S. Virani, S. Messimer, P. Roden, and L. Etzkorn. Software
quality management tool for engineering managers. In Proceedings
of the Industrial Engineering Research Conference, pages 1401–1406,
Vancouver, Canada, 2008.

[23] J. Wang and Z. Wang. Using neural networks to determine sugeno
measures by statistics. Neural Networks, 10(1):183–195, 1997.

[24] W. Wang, Z. Wang, and G. J. Klir. Genetic algorithms for determining
fuzzy measures from data. Journal of Intelligent & Fuzzy Systems:
Applications in Engineering and Technology, 6(2):171–183, 1998.

[25] X. Wang, J. Cummins, and M. Ceberio. The Bees algorithm to extract
fuzzy measures for sample data. In Proceedings of North American
Fuzzy Information Processing Society (NAFIPS’2011), El Paso, TX,
March 2011.

[26] Z. Wang, K. Leung, and J. Wang. A genetic algorithm for determing
nonadditive set functions in information fusion. Fuzzy Sets and Systems,
102(3):463–469, 1999.

