

LARGE DYNAMIC SYSTEMS:

Towards Predictions of Behavior, ``On-the-fly" Parameter Identification, and mobile device app.

M. Ceberio, M. Argaez, H. Florez, L. Valera, J. Padilla

Computer Science Department The University of Texas at El Paso Contact: mceberio@utep.edu

WHAT IS THE PROBLEM?

Given the model of a dynamical system, use it to make decisions...

- What type of decisions?
- What are the challenges? Why is it hard?

Types of decision of interest:

- Understanding how the corresponding dynamic phenomenon unfolds under different input parameters: simulations → e.g., design decisions
- $\bullet\,$ Based on some prior knowledge of the phenomenon, predicting its behavior $\to\,$ e.g., to allow preventive actions for instance
- Enforcing some behavior, when control of input or other parameters is possible, and/or recomputing parameters on the fly \rightarrow e.g., to address an unexpected event

CHALLENGES

 Solving the given dynamical system potentially leads to a large system of equations – often nonlinear

- We can solve very large problems but it takes time
- Design cases require realizations to make decisions
- What can be done?

• Let's add to that the possibility of **uncertainty** in the model, data, etc.

- Design of armored vehicles (blast computations)
- Soldiers location and stance are uncertain

And some interest in reliability / guaranteed results... as can be

- It is not just about getting data to make decisions
- We'd like to be able to rely on such data

WHY INTERVALS?

$$y' + \frac{x}{\sigma^2}y = 0$$
 $y(0) = \frac{1}{\sigma\sqrt{2\pi}}$ $\sigma = [1, \sqrt{3}]$

$$y' + \frac{x}{\sigma^2}y = 0 \quad y(0) = \frac{1}{\sigma\sqrt{2\pi}} \quad \sigma = [1, \sqrt{3}]$$
$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

$$y' + \frac{x}{\sigma^2}y = 0 \quad y(0) = \frac{1}{\sigma\sqrt{2\pi}} \quad \sigma = [1, \sqrt{3}]$$
$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

$$y' + \frac{x}{\sigma^2}y = 0 \quad y(0) = \frac{1}{\sigma\sqrt{2\pi}} \quad \sigma = [1,\sqrt{3}]$$
$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

1.8 2

$$y' + \frac{x}{\sigma^2}y = 0 \quad y(0) = \frac{1}{\sigma\sqrt{2\pi}} \quad \sigma = [1, \sqrt{3}]$$
$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

$$y' + \frac{x}{\sigma^2}y = 0 \quad y(0) = \frac{1}{\sigma\sqrt{2\pi}} \quad \sigma = [1, \sqrt{3}]$$
$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

The classic Lotka-Volterra model involves two species: x now stands for the population of the "prey" species, y for the population of the "predator" species.

$$\begin{cases} x' = \alpha x - \beta xy \\ y' = -\gamma y + \delta xy \end{cases}$$

 $\boldsymbol{\alpha}:$ reproduction rate of prey

 β : mortality rate of prey per pred.

So where are we in our list of challenges?

- Large problems... \rightarrow are now small
- $\bullet~$ Uncertainty... \rightarrow can be handled in both FOM and ROM

What are we left with?

• **Predictions:** Given a dynamical system, which is large originally, how can we predict its behavior knowing only a few observations?

 γ : mortality rate of predator

 δ : reproduction rate of pred. per prey

PREDICTIONS

So what is the problem?

Given a function:

$$F: \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n; \ (\lambda, x) \mapsto F(\lambda, x)$$

where, F represents a phenomenon and λ is known. So, $\forall \lambda \in \mathbb{R}$, we solve:

$$F(\lambda, x) = F_{\lambda}(x) = 0$$

where $x \in \mathbb{R}^n$ is unknown.

Prediction implies that we may not know the parameters λ . However, we have access to some measurements, $Obs = \{x_i, i \in \{1, ..., n\}\}$ for certain coordinates of x.

$$F(\lambda, x) = 0$$
 is now: $F_{Obs}(\lambda, x \setminus Obs) = 0$

Somehow G(X) = 0 for some G. However, assume that we have a ROM ϕ for F_{λ} , we cannot apply it directly to F_{Obs} . So we end up trying to solve:

$$F(\lambda, \Phi x) = 0 \land \forall x_k \in Obs, \ x_k = \sum_i \Phi_{k,i} p_i$$

PREDICTIONS

Here is part of the problem:

$$F(\lambda, \Phi x) = 0 \land \forall x_k \in Obs, \ x_k = \sum_i \Phi_{k,i} p_i$$

What do we obtain?

- the values of λ that are consistent with the observations on x
- the values of x before and beyond the observations: these allow us to make predictions

Let's look at some experimental results

PREYS AND PREDATORS OBSERVED AT T = 10

Let's say that we observe: x(t = 10) = [4, 5] and y(10) = [1, 1.5]Let's see what we would obtain with ROM: (21,264 ms)

PREYS AND PREDATORS OBSERVED AT T = 10 AND 30

Let's say that we observe: x(10) = [4,5], y(10) = [1,1.5], x(30) = [18,20], and and y(30) = [1,3]Let's see what we would obtain with ROM: (17,453 ms)

COMPARISON OF PREDICTIONS

ENFORCING BEHAVIORS: SOME RESULTS

What do we want to do?

PERTURBATION ON BOTH SPECIES AT T = 10

Let's say that a perturbation occurs at: x(t = 10) = [8.0, 9.0] and y(10) = [3.0, 4.0]Let's see what we would obtain with ROM: (21,264 ms)

PREDICTIONS: OUR TOOL

Our goal is to demonstrate the portability of our approach \rightarrow a tablet ... and a drone?

APPLICATION FUNCTIONALITIES

CURRENT WORK

CURRENT WORK

Android Emulator - VisualStudio_android-23_x86_phone:5554	
.	13 9:13
Parameters	
x1 = _1	1
x2 = _1	1
x3 = _1	1
L = <u>-15</u>	15
BACK SOLVE	
⊲ 0	

CURRENT WORK

CONCLUSION

- We were able to **enable predictions** even with uncertainty
- We were able to handle uncertainty on a dynamic systems when some unexpected event occurs.
- We were able to do reliable computations on mobile devices

But there is still a lot of work to be done:

- Making this approach practical: outliers, time horizon, computation time, etc.
- Assessing areas in which similar approaches can be taken in truly large systems (that do not need prediction but rather parameter estimation)