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WHAT IS THE PROBLEM?

Given the model of a dynamical system, use it to make decisions...

What type of decisions?
What are the challenges? Why is it hard?

Types of decision of interest:

Understanding how the corresponding dynamic phenomenon unfolds under
different input parameters: simulations → e.g., design decisions
Based on some prior knowledge of the phenomenon, predicting its behavior →
e.g., to allow preventive actions for instance
Enforcing some behavior, when control of input or other parameters is
possible, and/or recomputing parameters on the fly → e.g., to address an
unexpected event
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CHALLENGES

Solving the given dynamical system potentially leads to a large system of
equations – often nonlinear

We can solve very large problems but it takes time
Design cases require realizations to make decisions
What can be done?

Let’s add to that the possibility of uncertainty in the model, data, etc.

Design of armored vehicles (blast computations)
Soldiers location and stance are uncertain

And some interest in reliability / guaranteed results... as can be

It is not just about getting data to make decisions
We’d like to be able to rely on such data
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WHY INTERVALS?
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INTERVAL COMPUTATIONS VS STOCHASTIC METHODS
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UNCERTAINTY: LOTKA-VOLTERRA

The classic Lotka-Volterra model involves two species: x now stands for the population
of the “prey” species, y for the population of the “predator” species.{

x ′ = αx − βxy

y ′ = −γy + δxy

α : reproduction rate of prey
β : mortality rate of prey per pred.

γ : mortality rate of predator
δ : reproduction rate of pred. per prey

So where are we in our list of challenges?

Large problems... → are now small
Uncertainty... → can be handled in both FOM and ROM

What are we left with?

Predictions: Given a dynamical system, which is large originally, how can we
predict its behavior knowing only a few observations?
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PREDICTIONS

So what is the problem?

Given a function:
F : Rp × Rn → Rn; (λ, x) 7→ F(λ, x)

where, F represents a phenomenon and λ is known. So, ∀λ ∈ R, we solve:

F(λ, x) = Fλ(x) = 0

where x ∈ Rn is unknown.

Prediction implies that we may not know the parameters λ. However, we have access
to some measurements, Obs = {xi, i ∈ {1, . . . , n}} for certain coordinates of x.

F(λ, x) = 0 is now: FObs(λ, x \Obs) = 0

Somehow G(X) = 0 for some G. However, assume that we have a ROM ϕ for Fλ, we
cannot apply it directly to FObs. So we end up trying to solve:

F(λ,Φx) = 0 ∧ ∀xk ∈ Obs, xk =
∑
i

Φk,ipi
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PREDICTIONS

Here is part of the problem:

F(λ,Φx) = 0 ∧ ∀xk ∈ Obs, xk =
∑
i

Φk,ipi

What do we obtain?

the values of λ that are consistent with the observations on x

the values of x before and beyond the observations: these allow us to make
predictions

Let’s look at some experimental results
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PREYS AND PREDATORS OBSERVED AT T = 10

Let’s say that we observe: x(t = 10) = [4, 5] and y(10) = [1, 1.5]

Let’s see what we would obtain with ROM: (21,264 ms)
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PREYS AND PREDATORS OBSERVED AT T = 10 AND 30

Let’s say that we observe: x(10) = [4, 5], y(10) = [1, 1.5], x(30) = [18, 20], and and
y(30) = [1, 3]

Let’s see what we would obtain with ROM: (17,453 ms)
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COMPARISON OF PREDICTIONS
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ENFORCING BEHAVIORS: SOME RESULTS

What do we want to do?
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PERTURBATION ON BOTH SPECIES AT T = 10

Let’s say that a perturbation occurs at: x(t = 10) = [8.0, 9.0] and y(10) = [3.0, 4.0]

Let’s see what we would obtain with ROM: (21,264 ms)
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PREDICTIONS: OUR TOOL

Our goal is to demonstrate the portability of our approach → a tablet ... and a drone?
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APPLICATION FUNCTIONALITIES
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CURRENT WORK
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CURRENT WORK
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CONCLUSION

We were able to enable predictions even with uncertainty
We were able to handle uncertainty on a dynamic systems when some
unexpected event occurs.
We were able to do reliable computations on mobile devices

But there is still a lot of work to be done:

Making this approach practical: outliers, time horizon, computation time, etc.
Assessing areas in which similar approaches can be taken in truly large systems
(that do not need prediction but rather parameter estimation)
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