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WHAT IS THE PROBLEM?

Given the model of a dynamical system, use it to make decisions...

@ What type of decisions?
@ What are the challenges? Why is it hard?

Types of decision of interest:

@ Understanding how the corresponding dynamic phenomenon unfolds under
different input parameters: simulations — e.g., design decisions

@ Based on some prior knowledge of the phenomenon, predicting its behavior —
e.g., to allow preventive actions for instance

@ Enforcing some behavior, when control of input or other parameters is
possible, and/or recomputing parameters on the fly — e.g., to address an
unexpected event



CHALLENGES

@ Solving the given dynamical system potentially leads to a large system of
equations — often nonlinear

@ We can solve very large problems but it takes time
@ Design cases require realizations to make decisions
@ What can be done?

@ Let’s add to that the possibility of uncertainty in the model, data, etc.

@ Design of armored vehicles (blast computations)
@ Soldiers location and stance are uncertain

@ And some interest in reliability / guaranteed results... as can be

@ It is not just about getting data to make decisions
@ We'd like to be able to rely on such data



.,
WHY INTERVALS?
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INTERVAL COMPUTATIONS VS STOCHASTIC METHODS
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UNCERTAINTY: LOTKA-VOLTERRA

The classic Lotka-Volterra model involves two species: x now stands for the population
of the “prey” species, y for the population of the “predator” species.

{x’ = ox— Pxy

Yy = vyt
« : reproduction rate of prey v : mortality rate of predator
3 : mortality rate of prey per pred. & : reproduction rate of pred. per prey

So where are we in our list of challenges?

@ Large problems... — are now small
@ Uncertainty... — can be handled in both FOM and ROM

What are we left with?

@ Predictions: Given a dynamical system, which is large originally, how can we
predict its behavior knowing only a few observations?
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PREDICTIONS

So what is the problem?

Given a function:
F:RP x R™ — R™; (A,x) — F(A,x)

where, F represents a phenomenon and A is known. So, VA € R, we solve:
F(Ax) =Falx) =0

where x € R™ is unknown.

Prediction implies that we may not know the parameters A. However, we have access
to some measurements, Obs = {xi,1 € {1,...,n}} for certain coordinates of x.

F(A,x) = 0is now: Fops(A,x\ Obs) =0

Somehow G(X) = 0 for some G. However, assume that we have a ROM ¢ for F, we
cannot apply it directly to Fos. So we end up trying to solve:

F(\, ®x) =0 A ¥x € Obs, xjc = Yy Dy ipi
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PREDICTIONS

Here is part of the problem:

F(\, ®x) =0 A ¥xi € Obs, xjc = Yy Dy ipi

1

What do we obtain?

@ the values of A that are consistent with the observations on x

@ the values of x before and beyond the observations: these allow us to make
predictions

Let’s look at some experimental results



PREYS AND PREDATORS OBSERVED AT T =10

Let’s say that we observe: x(t = 10) = [4,5] and y(10) = [1,1.5]
Let's see what we would obtain with ROM: (21,264 ms)
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PREYS AND PREDATORS OBSERVED AT T = 10 AND 30

Let’s say that we observe: x(10) = [4,5], y(10) = [1,1.5], x(30) = [18,20], and and
y(30) =1[1,3]
Let's see what we would obtain with ROM: (17,453 ms)
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COMPARISON OF PREDICTIONS
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ENFORCING BEHAVIORS: SOME RESULTS

What do we want to do?
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B —
PERTURBATION ON BOTH SPECIES AT T = 10

Let’s say that a perturbation occurs at: x(t = 10) = [8.0, 9.0] and y(10) = (3.0, 4.0]
Let's see what we would obtain with ROM: (21,264 ms)
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PREDICTIONS: OUR TOOL

Our goal is to demonstrate the portability of our approach — a tablet ... and a drone?
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APPLICATION FUNCTIONALITIES

uQ w/o UQ

| Diagnosis and prognosis | | Simulation | |Parameters’ values |

| Number of observations | Graph and/or result

Parameters’ values
(intervals)
Observations’ Graph and/or result

values (intervals)

Graph and/or result




CURRENT WORK

Android Emulator - VisualStudio_android-23_x86_phone:5554

o ‘4

Interval Dynamic System Solver

RUN SOLVING TECHNIQUES

IMPORTANCE OF INTERVAL
COMPUTATION
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CURRENT WORK

Android Emulator - VisualStudio_andro Android Emulator - VisualStudio_android-23_x86_phone:5554

i ® i ® U5 @913
Interval Dynamic System Solver PARAMETERS
x1= -1 1
x2= -1 1
x3= -1 1
Le 5 15

RUN SOLVING TECHNIQUES

IMPORTANCE OF INTERVAL
COMPUTATION

BACK SOLVE
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CURRENT WORK

Android Emulator - VisualStudio_android-23_x86_phone:5554

"I
PLoT
SOLUTIONS
6
Clustered [ Not Clustered
4
OuTPUT DETAIL
2 Solutions: 4
Function:
0 (6-lambda)*x1=0
(-1)*x1 + (3-lambda)*x2 + (-1)*x3=0
2 (5*x1) + (-1)*x2 + (3-lambda)*x3=0
0 0.5 1 1.5 2 25 3 x1A2 + x2A2 + x3A2=0
Initial Box
xi=[-1, 1]
lambda = [-15, 15]
Box1
RUN DETAILS
x1=[-8.31834953585784E-27,1.764587762
9400494E-26]
Runtime 1.04 seconds
x2=[-0.7071067811865476, -0.7071067811
865475]
x3=[-0.7071067811865476,-0.7071067811
BACK
BACK VIEW
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CONCLUSION

@ We were able to enable predictions even with uncertainty

@ We were able to handle uncertainty on a dynamic systems when some
unexpected event occurs.

@ We were able to do reliable computations on mobile devices

But there is still a lot of work to be done:

@ Making this approach practical: outliers, time horizon, computation time, etc.

@ Assessing areas in which similar approaches can be taken in truly large systems
(that do not need prediction but rather parameter estimation)
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